
1

CIS Software Supply Chain Security Guide

CIS Software
Supply Chain
Security Guide
v1.0

June 2022

i

CIS Software Supply Chain Security Guide

Terms of Use
Please use the following link for our current terms of use:
https://www.cisecurity.org/terms-of-use-for-non-member-cis-products/

https://www.cisecurity.org/terms-of-use-for-non-member-cis-products/

ii

CIS Software Supply Chain Security Guide

Contents
Overview	 1

Intended Audience	 3
Consensus Guidance	 3
Acknowledgments	 3

1	 Source Code	 4

1.1	 Code Changes	 4

1.1.1	 Ensure any changes to code are tracked in a version control platform__ 4
1.1.2	 Ensure any change to code can be traced back to its associated task__ 5
1.1.3	 Ensure any change to code receives approval of two strongly authenticated users

(Automated)_ ___ 5
1.1.4	 Ensure previous approvals are dismissed when updates are introduced to a code

change proposal__ 6
1.1.5	 Ensure there are restrictions on who can dismiss code change reviews_ ____________________________________ 6
1.1.6	 Ensure code owners are set for extra sensitive code or configuration_ __ 7
1.1.7	 Ensure code owner’s review is required when a change affects owned code_ ____________________________ 7
1.1.8	 Ensure inactive branches are periodically reviewed and removed___ 8
1.1.9	 Ensure all checks have passed before merging new code__ 8
1.1.10	Ensure open Git branches are up to date before they can be merged into code base________________ 9
1.1.11	Ensure all open comments are resolved before allowing code change merging_________________________ 9
1.1.12	Ensure verification of signed commits for new changes before merging___________________________________ 10
1.1.13	Ensure linear history is required___ 10
1.1.14	Ensure branch protection rules are enforced for administrators___ 11
1.1.15	Ensure pushing or merging of new code is restricted to specific individuals or teams_ ____________ 11
1.1.16	Ensure force push code to branches is denied__ 12
1.1.17	Ensure branch deletions are denied___ 12
1.1.18	Ensure any merging of code is automatically scanned for risks_ __ 12
1.1.19	Ensure any changes to branch protection rules are audited___ 13

1.2	 Repository Management	 14

1.2.1	 Ensure all public repositories contain a SECURITY.md file___ 14
1.2.2	 1.2.2 Ensure repository creation is limited to specific members__ 14
1.2.3	 Ensure repository deletion is limited to specific users_ ___ 15
1.2.4	 Ensure issue deletion is limited to specific users___ 15
1.2.5	 Ensure all copies (forks) of code are tracked and accounted for__ 15
1.2.6	 Ensure all code projects are tracked for changes in visibility status___ 16
1.2.7	 Ensure inactive repositories are reviewed and archived periodically___ 16

iii

CIS Software Supply Chain Security Guide

1.3	 Contribution Access	 16

1.3.1	 Ensure inactive users are reviewed and removed periodically_ __ 17
1.3.2	 Ensure team creation is limited to specific members__ 17
1.3.3	 Ensure minimum number of administrators are set for the organization___________________________________ 17
1.3.4	 Ensure Multi-Factor Authentication (MFA) is required for contributors of new code_ _______________ 18
1.3.5	 Ensure the organization is requiring members to use Multi-Factor Authentication (MFA)________ 18
1.3.6	 Ensure new members are required to be invited using company-approved email____________________ 19
1.3.7	 Ensure two administrators are set for each repository__ 19
1.3.8	 Ensure strict base permissions are set for repositories___ 20
1.3.9	 Ensure an organization’s identity is confirmed with a “Verified” badge_____________________________________ 20
1.3.10	Ensure Source Code Management (SCM) email notifications are restricted to

verified domains__ 21
1.3.11	Ensure an organization provides SSH certificates___ 21
1.3.12	Ensure Git access is limited based on IP addresses_ __ 22
1.3.13	Ensure anomalous code behavior is tracked_ __ 22

1.4	 Third-Party	 23

1.4.1	 Ensure administrator approval is required for every installed application__________________________________ 23
1.4.2	 Ensure stale applications are reviewed and inactive ones are removed_ ___________________________________ 23
1.4.3	 Ensure the access granted to each installed application is limited to the least

privilege needed__ 24

1.5	 Code Risks	 24

1.5.1	 Ensure scanners are in place to identify and prevent sensitive data in code_____________________________ 24
1.5.2	 Ensure scanners are in place to secure Continuous Integration (CI) pipeline instructions_ ______ 25
1.5.3	 Ensure scanners are in place to secure Infrastructure as Code (IaC) instructions_____________________ 25
1.5.4	 Ensure scanners are in place for code vulnerabilities___ 26
1.5.5	 Ensure scanners are in place for open-source vulnerabilities in used packages_______________________ 26
1.5.6	 Ensure scanners are in place for open-source license issues in used packages_______________________ 27

2	 Build Pipelines	 28

2.1	 Build Environment	 28

2.1.1	 Ensure each pipeline has a single responsibility_ __ 28
2.1.2	 Ensure all aspects of the pipeline infrastructure and configuration are immutable___________________ 29
2.1.3	 Ensure the build environment is logged___ 29
2.1.4	 Ensure the creation of the build environment is automated__ 30
2.1.5	 Ensure access to build environments is limited___ 30
2.1.6	 Ensure users must authenticate to access the build environment__ 31

2.2	 Build Worker	 31

2.2.1	 Ensure build workers are single-used__ 31
2.2.2	 Ensure build worker environments and commands are passed and not pulled________________________ 32
2.2.3	 Ensure the duties of each build worker are segregated__ 32
2.2.4	 Ensure build workers have minimal network connectivity__ 33
2.2.5	 Ensure run-time security is enforced for build workers___ 33
2.2.6	 Ensure build workers are automatically scanned for vulnerabilities___ 34
2.2.7	 Ensure build workers’ deployment configuration is stored in a version control platform_ _________ 34
2.2.8	 Ensure resource consumption of build workers is monitored___ 35

iv

CIS Software Supply Chain Security Guide

2.3	 Pipeline Instructions	 35

2.3.1	 Ensure all build steps are defined as code___ 35
2.3.2	 Ensure steps have clearly defined build stage input and output_ ___ 36
2.3.3	 Ensure output is written to a separate, secured storage repository__ 36
2.3.4	 Ensure changes to pipeline files are tracked and reviewed_ ___ 36
2.3.5	 Ensure access to build process triggering is minimized___ 37
2.3.6	 Ensure pipelines are automatically scanned for misconfigurations__ 37
2.3.7	 Ensure pipelines are automatically scanned for vulnerabilities_ ___ 37
2.3.8	 Ensure scanners are in place to identify and prevent sensitive data in pipeline files

(Automated)_ ___ 38

2.4	 Pipeline Integrity	 38

2.4.1	 Ensure all artifacts on all releases are signed__ 38
2.4.2	 Ensure all external dependencies used in the build process are locked_ ___________________________________ 39
2.4.3	 Ensure dependencies are validated before being used___ 39
2.4.4	 Ensure the build pipeline creates reproducible artifacts___ 39
2.4.5	 Ensure pipeline steps produce a Software Bill of Materials (SBOM)__ 40
2.4.6	 Ensure pipeline steps sign the SBOM produced_ __ 40

3	 Dependencies	 41

3.1	 Third-Party Packages	 41

3.1.1	 Ensure third-party artifacts and open-source libraries are verified__ 41
3.1.2	 Ensure SBOM is required from all third-party suppliers__ 42
3.1.3	 Ensure signed metadata of the build process is required and verified_______________________________________ 42
3.1.4	 Ensure dependencies are monitored between open-source components_________________________________ 43
3.1.5	 Ensure trusted package managers and repositories are defined and prioritized_______________________ 43
3.1.6	 Ensure a signed SBOM of the code is supplied___ 43
3.1.7	 Ensure dependencies are pinned to a specific, verified version_ __ 44
3.1.8	 Ensure all packages used are more than 60 days old_ __ 44

3.2	 Validate Packages	 44

3.2.1	 Ensure an organization-wide dependency usage policy is enforced__ 45
3.2.2	 Ensure packages are automatically scanned for known vulnerabilities_____________________________________ 45
3.2.3	 Ensure packages are automatically scanned for license implications__ 45
3.2.4	 Ensure packages are automatically scanned for ownership change__ 46

4	 Artifacts	 47

4.1	 Verification	 47

4.1.1	 Ensure all artifacts are signed by the build pipeline itself___ 47
4.1.2	 Ensure artifacts are encrypted before distribution__ 47
4.1.3	 Ensure only authorized platforms have decryption capabilities of artifacts_______________________________ 48

v

CIS Software Supply Chain Security Guide

4.2	 Access to Artifacts	 48

4.2.1	 Ensure factor authorization to certify certain artifacts is limited_ ___ 48
4.2.2	 Ensure number of permitted users who may upload new artifacts is minimized_______________________ 49
4.2.3	 Ensure user access to the package registry utilizes Multi-Factor Authentication (MFA)_ _________ 49
4.2.4	 Ensure user management of the package registry is not local_ __ 50
4.2.5	 Ensure anonymous access to artifacts is revoked___ 50

4.3	 Package Registries	 50

4.3.1	 Ensure all signed artifacts are validated upon uploading the package registry_________________________ 51
4.3.2	 Ensure all versions of an existing artifact have their signatures validated__________________________________ 51
4.3.3	 Ensure changes in package registry configuration are audited__ 51
4.3.4	 Ensure webhooks of the package registry are secured___ 52

4.4	 Origin Traceability	 52

4.4.1	 Ensure artifacts contain information about their origin___ 52
4.4.2	 Ensure private artifacts are not allowed to be pulled from external registries_ __________________________ 53

5	 Deployment	 54

5.1	 Deployment Configuration	 54

5.1.1	 Ensure deployment configuration files are separated from source code___________________________________ 54
5.1.2	 Ensure changes in deployment configuration are tracked__ 55
5.1.3	 Ensure scanners are in place to identify and prevent sensitive data in deployment

configuration_ __ 55
5.1.4	 Ensure access to deployment configurations are limited to specific members_ ________________________ 56
5.1.5	 Ensure scanners are in place to secure Infrastructure as Code (IaC) instructions_____________________ 56
5.1.6	 Ensure deployment configuration manifests are verified__ 57
5.1.7	 Ensure deployment configuration manifests are pinned to a specific, verified version_____________ 57

5.2	 Deployment Environment	 58

5.2.1	 Ensure deployments are automated___ 58
5.2.2	 Ensure the deployment environment is reproducible__ 58
5.2.3	 Ensure access to production environment is limited___ 59
5.2.4	 Ensure default passwords are not used___ 59

1

CIS Software Supply Chain Security Guide

Overview
Argon (now part of Aqua Security) approached the Center for Internet Security (CIS) with the
idea of developing a CIS Benchmark for Software Supply Chain Security. CIS has developed
and published secure configuration guidance (i.e., CIS Benchmarks) covering a wide variety
of technologies for many years, but the concept of creating a Benchmark for Software
Supply Chain Security presented a new set of issues. There are a variety of technologies and
platforms commonly used for developing modern software, so which should be covered? How
do we ensure consistent security recommendations across the various platforms?

It was decided that instead of diving into creating a specific Benchmark initially, a more
generic guidance set would be created first to act as the parent for the more specific guidance
to come. Thus, the CIS Software Supply Chain Security Guide was born. The hope with the
publication of this Guide is to elicit feedback from the global community that will help ensure
the future platform-specific guidance (CIS Benchmarks) is even more accurate and relevant.

CIS Software Supply Chain
Security Guide

CIS GitHub
Benchmark

CIS Azure DevOps
Benchmark

The Guide follows the phases of the software supply chain, as described in the below chart,
from the moment a contributor adds code to the moment the application is delivered to
the customer.

Source Integrity Build Integrity

Dependency

Source

Prevent
Commit

Malicious
Code

(1)

Eliminate
Connectivity
Blind Spots

(3)

Secure Build
(4)

Dependencies
Integrity

(5)

Secure SCM
(2)

Pipeline
Analysis

(6)

Release
Integrity

(8)

Secure Artifacts
(7)

Build Artifacts

Deployment Integrity

2

CIS Software Supply Chain Security Guide

The Guide currently consists of 100+ recommendations organized into five main categories:

1	 Source Code: Security recommendations for proper source code management of any
application developed by the organization.

	• This is the first phase of the software supply chain and is considered the only source of
truth for the rest of the process. Because of that, it needs to be protected from the code
itself, with the vulnerabilities, misconfigurations, and sensitive data it might hold, to the
platform it is stored on.

2	 Build Pipelines: Security recommendations for the management and security of the build
pipeline components.

	• Build components include build pipelines — a set of instructions dedicated to taking raw
files of source code and running a series of tasks on them to achieve some final artifact as
output, the environment they are running on, their management and execution, and more.
This second phase of the software supply chain is targeted increasingly at supply chain
attacks (e.g., the Codecov attack or SolarWinds).

3	 Dependencies: Security recommendations for the management of various dependencies
introduced as part of the software build and release process.

	• Dependencies are a huge part of the software supply chain, as they are comprised of
anything that goes into application code or is used by the build pipelines themselves. They
are often written by third-party developers and might be vulnerable to certain attacks (e.g.,
the log4j attack).

4	 Artifacts: Security recommendations for the management of artifacts produced by build
pipelines, as well as ones used by the application in the build process itself.

	• Artifacts are packaged versions of software. They are stored in package registries (or
artifact managers) and require securing from the moment they are created, through the
time they are copied and updated, and up to deployment to their relevant environment.

5	 Deployment: Security recommendations for the management of the application deployment
process, the configurations, and the files that come with it.

	• This is the final phase of the software supply chain. After that, the client already uses the
application, and it is running in production. It is important to secure all of these to deliver
the software to the client safely.

The overall vision of the Guide and ultimately of the CIS Benchmarks is to support key
emerging standards like Supply-chain Levels for Software Artifacts (SLSA) and The Update
Framework (TUF) with foundational recommendations for setting and auditing configurations
on the Benchmark-supported platforms.

By publishing the CIS Software Supply Chain Security Guide, CIS and Aqua Security hope to
build a vibrant set of communities interested in developing the platform-specific Benchmark
guidance to come. They are calling on subject matter experts (SMEs) that develop or work
with these platforms to help create this guidance in the collaborative and consensus-based
manner CIS is known for.

To date, the Guide has been reviewed by SMEs from Aqua Security, CIS, Microsoft,
PayPal, Red Hat, CyberArk, Axonius, and others. By publishing the current work, CIS and
Aqua Security want an even wider audience of SMEs to contribute to this project, for the
benefit of all.

To contribute to this or other CIS Benchmark projects, please contact the CIS Benchmarks

3

CIS Software Supply Chain Security Guide

Development Team at benchmarkinfo@cisecurity.org.

Intended Audience
This CIS Guide is intended for DevOps and application security administrators, security
specialists, auditors, help desks, and platform deployment personnel who plan to develop,
deploy, assess, or secure solutions to build and deploy software updates through automated
means of DevOps pipelines.

Consensus Guidance
This Guide was created using a consensus review process comprised of a global community
of subject matter experts. The process combines real-world experience with data-
based information to create technology-specific guidance to assist users to secure their
environments. Consensus participants provide perspective from a diverse set of backgrounds
including consulting, software development, audit and compliance, security research,
operations, government, and legal.

Acknowledgments
This Guide exemplifies the great things a community of users, vendors, and subject matter
experts can accomplish through consensus collaboration. The CIS community thanks the
entire consensus team with special recognition to the following individuals who contributed
greatly to the creation of this Guide:

Authors
Eylam Milner, Aqua Security
Resheet Kosef, Aqua Security

Contributors
Yossi Weizman, Microsoft
Erez Dasa, PayPal
Michael Kotelnikov, Red Hat
Moshik Barak, CyberArk
Ofir Shapira, Axonius
Mor Weinberger, Aqua Security
Yakir Kadkoda, Aqua Security
Randy Mowen, Center for Internet Security
Stephen Keller, Center for Internet Security
Phil White, Center for Internet Security
Andrew Dannenberger, Center for Internet Security
Kari Byrd, Independent Consultant
Ori Zerah, Aqua Security
Lucas Aides, Aqua Security
Marina Segal, Sysdig

mailto:benchmarkinfo%40cisecurity.org?subject=

4

CIS Software Supply Chain Security Guide

1	Source Code
This section consists of security recommendations for proper source code management of any application developed by
the organization. This is the first phase of the software supply chain, and is considered the single source of truth for the rest
of the process.

It is critical to secure both the source code itself, as well as the platform with which it is managed, in order to protect the
integrity of a software release. From the developers who commit changes, to the sensitive data or vulnerabilities that could
be placed within it, and ultimately to the source code management platform in which it is stored, verification of the integrity
of the source code is imperative in order to keep every software update secure.

1.1	Code Changes

This section consists of security recommendations for code changes and how they should be
done. It contains recommendations to protect the main branch of the application code. This
branch is the most important one, because it contains the actual code that is being delivered
to the customer. It should be protected from any mistake or malicious deed in order to keep
the software secured.

1.1.1	 Ensure any changes to code are tracked in a version control platform

Description
Manage all code projects in a version control platform.

Rationale
Version control platforms keep track of every modification to code. They represent the
cornerstone of code security, as well as allow for better code collaboration within engineering
teams. With granular access management, change tracking, and key signing of code edits,
version control platforms are the first step in securing the software supply chain.

Audit
Ensure that all code activity is managed through a version control platform for every
microservice or application developed by an organization.

Remediation
Upload existing code projects to a dedicated version control platform and create an identity
for each active team member who might contribute or need access to it.

5

CIS Software Supply Chain Security Guide

1.1.2	 Ensure any change to code can be traced back to its associated task

Description
Use a task management system to trace any code back to its associated task.

Rationale
The ability to trace each piece of code back to its associated task simplifies the Agile
and DevOps process by enabling transparency of any code changes. This allows faster
remediation of bugs and security issues, while also making it harder to push unauthorized
code changes to sensitive projects. Additionally, using a task management system simplifies
achieving compliance, as it is easier to track each regulation.

Audit
Ensure every code change can be traced back to its origin task in a task management system.

Remediation
Use a task management system to manage tasks as the starting point for each code change.
Whether it is a new feature, bug fix, or security fix — all should originate from a dedicated task
(ticket) in your organization’s task management system. These tasks should also be linked to
the code changes themselves in a way that is easy to follow: from code to task, and from task
back to code.

1.1.3	 Ensure any change to code receives approval of two strongly authenticated users
(Automated)

Description
Ensure that every code change is reviewed and approved by two authorized contributors who
are both strongly authenticated, from the team relevant to the code change.

Rationale
To prevent malicious or unauthorized code changes, the first layer of protection is the process
of code review. This process involves engineer teammates reviewing each other’s code for
errors, optimizations, and general knowledge-sharing. With proper peer reviews in place, an
organization can detect unwanted code changes very early in the process of release. In order
to help facilitate code review, companies should employ automation to verify that every code
change has been reviewed and approved by at least two team members before it is pushed
into the code base. These team members should be from the team that is related to the code
change, so it will be a meaningful review.

Note  To enforce a code review requirement, verification for a minimum of two reviewers
must be put into place. This will ensure new code will not be able to be pushed to the code
base before it has received two independent approvals.

Audit
For every code repository in use, verify that two approvals from the specific code repository
team are required in order to push new code to the code base.

Remediation
An organization can protect specific code branches — for example, the “main” branch, which
often is the version deployed to production — by setting protection rules. These rules secure
your code repository from unwanted or unauthorized changes. You may set requirements for
any code change to that branch, and thus specify a minimum number of reviewers required to
approve a change.

6

CIS Software Supply Chain Security Guide

1.1.4	 Ensure previous approvals are dismissed when updates are introduced to a code
change proposal

Description
Ensure that when a proposed code change is updated, previous approvals are declined and
new approvals are required.

Rationale
An approval process is necessary when code changes are suggested. Through this approval
process, however, changes can still be made to the original proposal even after some
approvals have already been given. This means malicious code can find its way into the code
base even if the organization has enforced a review policy. To ensure this is not possible,
outdated approvals must be declined when changes to the suggestion are introduced.

Note  If new code changes are pushed to a specific proposal, all previously accepted code
change proposals must be declined.

Audit
For each code repository in use, validate that each updated code suggestion declines the
previously received approvals.

Remediation
For each code repository in use, enforce an organization-wide policy to dismiss given
approvals to code change suggestions if those suggestions were updated.

1.1.5	 Ensure there are restrictions on who can dismiss code change reviews

Description
Only trusted users should be allowed to dismiss code change reviews.

Rationale
Dismissing a code change review permits users to merge new suggested code changes
without going through the standard process of approvals. Controlling who can perform this
action will prevent malicious actors from simply dismissing the required reviews to code
changes and merging malicious or dysfunctional code into the code base.

Note  In cases where a code change proposal has been updated since it was last reviewed
and the person who reviewed it is not available for approval, a general collaborator would
not be able to merge their code changes until a user with “dismiss review” abilities could
dismiss the open review. Users who are not allowed to dismiss code change reviews will
not be permitted to do so, and thus are unable to waive the standard flow of approvals.

Audit
For each code repository in use, ensure that only trusted users are allowed to dismiss code
change reviews.

Remediation
For each code repository in use, do not grant the permission to dismiss code change reviews
unless it is really necessary. If it is obligatory, carefully select the individual collaborators or
groups whom you trust with the ability to dismiss code change reviews.

7

CIS Software Supply Chain Security Guide

1.1.6	 Ensure code owners are set for extra sensitive code or configuration

Description
Code owners are trusted users that are responsible for reviewing and managing an important
piece of code or configuration. An organization is advised to set code owners for every
extremely sensitive code or configuration.

Rationale
Configuring code owners protects data by verifying that trusted users will notice and review
every edit, thus preventing unwanted or malicious changes from potentially compromising
sensitive code or configurations.

Note  Code owner users will receive notifications for every change that occurs to the code
and subsequently added as reviewers of pull requests automatically.

Audit
For every code repository in use, ensure code owners are set for sensitive code or
configuration.

Remediation
For every code repository in use, identify particularly sensitive parts of code and
configurations and set trusted users to be their code owners.

1.1.7	 Ensure code owner’s review is required when a change affects owned code

Description
Ensure trusted code owners are required to review and approve any code change proposal
made to their respective owned areas in the code base.

Rationale
Configuring code owners ensures that no code, especially code that could prove malicious,
will slip into the source code or configuration files of a repository. This allows an organization
to mark areas in the code base that are especially sensitive or more prone to an attack. It can
also enforce review by specific individuals who are designated as owners to those areas so
that they may filter out unauthorized or unwanted changes beforehand.

Note  If an organization enforces code owner-based reviews, some code change proposals
would not be able to be merged to the code base before specific, trusted individuals
approve them.

Audit
For each repository in use, verify that code owners are required to review all code change
proposals relevant to areas they own.

Remediation
For each repository in use, configure code owner-required approvals for each change
proposal related to code they own.

8

CIS Software Supply Chain Security Guide

1.1.8	 Ensure inactive branches are periodically reviewed and removed

Description
Keep track of code branches that are inactive for a lengthy period of time and periodically
remove them.

Rationale
Git branches that have been inactive (i.e., no new changes introduced) for a long period of
time are enlarging the surface of attack for malicious code injection, sensitive data leaks, and
CI pipeline exploitation. They potentially contain outdated dependencies that may leave them
highly vulnerable. They are more likely to be improperly managed, and could possibly be
accessed by a large number of members of the organization.

Note  Removing inactive Git branches means that any code changes they contain would
be removed along with them, thus work done in the past might not be accessible after
auditing for inactivity.

Audit
For each code repository in use, verify that all existing Git branches are active or have yet to
be checked for inactivity within a specified period.

Remediation
For each code repository in use, review existing Git branches and remove those that have not
been active for a prescribed period.

1.1.9	 Ensure all checks have passed before merging new code

Description
Before a code change request can be merged to the code base, all predefined checks must
successfully pass.

Rationale
On top of manual reviews of code changes, a code protect should contain a set of prescriptive
checks that validate each change. Organizations should enforce those status checks so that
changes can only be introduced if all checks have successfully passed. This set of checks
should serve as the absolute quality, stability, and security conditions that must be met in
order to merge new code to a project.

Note  Code changes in which all checks do not pass successfully would not be able to be
pushed into the code base of the specific code repository.

Audit
Ensure that for each code repository in use, status checks are required to pass before allowing
any code change proposal merge.

Remediation
Configure each code repository to require all status checks to pass before permitting a merge
of new code.

9

CIS Software Supply Chain Security Guide

1.1.10	 Ensure open Git branches are up to date before they can be merged into code base

Description
Organizations should make sure each suggested code change is in full sync with the existing
state of its origin code repository before allowing merging.

Rationale
Git branches can easily become outdated since the origin code repository is constantly being
edited. This means engineers working on separate code branches can accidentally include
outdated code with potential security issues that might have already been fixed, overriding the
potential solutions for those security issues when merging their own changes.

Note  If enforced, outdated branches would not be able to be merged into their origin
repository without first being updated to contain any recent changes.

Audit
For each code repository in use, verify that open branches must be updated before merging is
permitted.

Remediation
For each code repository in use, enforce a policy to only allow merging open branches if they
are current with the latest change from their origin repository.

1.1.11	 Ensure all open comments are resolved before allowing code change merging

Description
Organizations should enforce a “no open comments” policy before allowing code
change merging.

Rationale
In an open code change proposal, reviewers can leave comments containing their questions
and suggestions. These comments can also include potential bugs and security issues.
Requiring all comments on a code change proposal to be resolved before it can be merged
ensures that every concern is properly addressed or acknowledged before the new code
changes are introduced to the code base.

Note  Code change proposals containing open comments would not be able to be merged
into the code base.

Audit
For every code repository in use, verify that each merged code change does not contain open,
unattended comments.

Remediation
For each code repository in use, require open comments to be resolved before the relevant
code change can be merged.

10

CIS Software Supply Chain Security Guide

1.1.12	 Ensure verification of signed commits for new changes before merging

Description
Ensure every commit in a pull request is signed and verified before merging.

Rationale
Signing commits, or requiring to sign commits, gives other users confidence about the origin
of a specific code change. It ensures that the author of the change is not hidden and is verified
by the version control system, thus the change comes from a trusted source.

Note  Pull requests with unsigned commits cannot be merged.

Audit
Ensure only signed commits can be merged for every branch, especially the main branch, via
branch protection rules.

Remediation
For each repository in use, enforce the branch protection rule of requiring signed commits,
and make sure only signed commits are capable of merging.

1.1.13	 Ensure linear history is required

Description
Linear history is the name for Git history where all commits are listed in chronological order,
one after another. Such history exists if a pull request is merged either by rebase merge
(reorders the commits history) or squash merge (squashes all commits to one). Ensure that
linear history is required by requiring the use of rebase or squash merge when merging a
pull request.

Rationale
Enforcing linear history produces a clear record of activity, and as such it offers specific
advantages: it is easier to follow, it is easier to revert a change, and bugs can be found
more easily.

Note  Pull requests cannot be merged except by squash or rebase merge.

Audit
For each repository in use, ensure that linear history is required and/or that only squash
merge and rebase merge are allowed.

Remediation
For each repository in use, require linear history and/or allow only rebase merge and
squash merge.

11

CIS Software Supply Chain Security Guide

1.1.14	 Ensure branch protection rules are enforced for administrators

Description
Ensure administrators are subject to branch protection rules.

Rationale
Administrators by default are excluded from any branch protection rules. This means these
privileged users (on both the repository and organization levels) are not subject to protections
meant to prevent untrusted code insertion, including malicious code. This is extremely
important since administrator accounts are often targeted for account hijacking due to their
privileged role.

Note  Administrator users will not be able to push code directly to the protected branch
without being compliant with listed branch protection rules.

Audit
For each repository in use, validate branch protection rules also apply to
administrator accounts.

Remediation
For each repository in use, enforce branch protection rules on administrators, as well.

1.1.15	 Ensure pushing or merging of new code is restricted to specific individuals or teams

Description
Ensure that only trusted users can push or merge new code to protected branches.

Rationale
Requiring that only trusted users may push or merge new changes reduces the risk of
unverified code, especially malicious code, to a protected branch by reducing the number of
trusted users who are capable of doing such.

Note  Only administrators and trusted users can push or merge to the protected branch.

Audit
For each repository that is being used, ensure only trusted and responsible users can push or
merge new code.

Remediation
For each repository in use, allow only trusted and responsible users to push or
merge new code.

12

CIS Software Supply Chain Security Guide

1.1.16	 Ensure force push code to branches is denied

Description
The “force push” option allows users with “push” permissions to force their changes directly to
the branch without a pull request, and thus should be disabled.

Rationale
The “force push” option allows users to override the existing code with their own code.
This can lead to both intentional and unintentional data loss, as well as data infection with
malicious code. Disabling the “force push” option prohibits users from forcing their changes to
the main branch, which ultimately prevents malicious code from entering source code.

Note  Users cannot “force push” to protected branches.

Audit
For each repository in use, validate that no one can “force push” code.

Remediation
For each repository in use, block the option to “force push” code.

1.1.17	 Ensure branch deletions are denied

Description
Ensure that users with only push access are incapable of deleting a protected branch.

Rationale
When enabling deletion of a protected branch, any user with at least push access to the
repository can delete a branch. This can be potentially dangerous, as a simple human mistake
or a hacked account can lead to data loss if a branch is deleted. It is therefore crucial to
prevent such incidents by denying protected branch deletion.

Note  Protected branches cannot be deleted.

Audit
For each repository that is being used, verify that protected branches cannot be deleted.

Remediation
For each repository that is being used, block the option to delete protected branches via
branch protection rules.

1.1.18	 Ensure any merging of code is automatically scanned for risks

Description
Ensure that every pull request is required to be scanned for risks.

Rationale
Scanning pull requests to detect risks allows for early detection of vulnerable code and/or
dependencies and helps mitigate potentially malicious code.

Audit
For each repository in use, ensure that every pull request must be scanned for risks.

Remediation
For every repository in use, enforce risk scanning on every pull request.

13

CIS Software Supply Chain Security Guide

1.1.19	 Ensure any changes to branch protection rules are audited

Description
Ensure that changes in the branch protection rules are audited.

Rationale
Branch protection rules should be configured on every repository. The only users who may
change such rules are administrators. In a case of an attack on an administrator account
or of human error on the part of an administrator, protection rules could be disabled, and
thus decrease source code confidentiality as a result. It is important to track and audit such
changes to prevent potential incidents as soon as possible.

Audit
Ensure a tracking system is in place that logs changes in branch protection rules
(webhooks, etc.).

Remediation
Use, maintain, or create a tracking system that tracks changes in branch protection rules
(webhooks, etc.).

14

CIS Software Supply Chain Security Guide

1.2	Repository Management

This section consists of security recommendations for proper code repository management.

Code repositories are where the application code is stored and organized. It is important
to keep code repositories organized and maintained to avoid data loss, data theft, and
other attacks that may happen unknowingly when a repository is not maintained well. The
recommendations of this section are setting guides to do so.

1.2.1	 Ensure all public repositories contain a SECURITY.md file

Description
A SECURITY.md file is a security policy file that offers instruction on reporting security
vulnerabilities in a project. When someone creates an issue within a specific project, a link to
the SECURITY.md file will subsequently be shown.

Rationale
A SECURITY.md file provides users with crucial security information. It can also serve an
important role in project maintenance, encouraging users to think ahead about how to
properly handle potential security issues, updates, and general security practices.

Audit
For each repository in use, verify that it has a SECURITY.md file in the documents or root
directory of the repository.

Remediation
For each repository in use, create a SECURITY.md file and save it in the documents or root
directory of the repository.

1.2.2	 1.2.2 Ensure repository creation is limited to specific members

Description
Limit the ability to create repositories to trusted users and teams.

Rationale
Restricting repository creation to trusted users and teams is recommended in order to keep
the organization properly structured, track fewer items, prevent impersonation, and to not
overload the version control system. It will allow administrators easier source code tracking
and management capabilities, as they will have fewer repositories to track. The process of
detecting potential attacks becomes far more straightforward, as well, since the easier it is
to track the source code, the easier it is to detect malicious acts within it. Additionally, the
possibility of a member creating a public repository and sharing the organization’s data
externally is significantly decreased.

Note  Specific users will not be permitted to create repositories.

Audit
Verify that only trusted users and teams can create repositories.

Remediation
Restrict repository creation to trusted users and teams only.

15

CIS Software Supply Chain Security Guide

1.2.3	 Ensure repository deletion is limited to specific users

Description
Ensure only a limited number of trusted users can delete repositories.

Rationale
Restricting the ability to delete repositories protects the organization from intentional and
unintentional data loss. This ensures that users cannot delete repositories or cause other
potential damage — whether by accident or due to their account being hacked — unless they
have the correct privileges.

Note  Certain users will not be permitted to delete repositories.

Audit
Verify that only a limited number of trusted users can delete repositories.

Remediation
Enforce repository deletion by a few trusted and responsible users only.

1.2.4	 Ensure issue deletion is limited to specific users

Description
Ensure only trusted and responsible users can delete issues.

Rationale
Issues are a way to keep track of things happening in repositories, such as setting new
milestones or requesting urgent fixes. Deleting an issue is not a benign activity, as it might
harm the development workflow or attempt to hide malicious behavior. Because of this, it
should be restricted and allowed only by trusted and responsible users.

Note  Certain users will not be permitted to delete issues.

Audit
Verify that only trusted and responsible users can delete issues.

Remediation
Restrict issue deletion to a few trusted and responsible users only.

1.2.5	 Ensure all copies (forks) of code are tracked and accounted for

Description
Track every fork of code and ensure it is accounted for.

Rationale
A fork is a copy of a repository. On top of being a plain copy, any updates to the original
repository itself can be pulled and reflected by the fork under certain conditions. A large
number of repository copies (forks) become difficult to manage and properly secure. New and
sensitive changes can often be pushed into a critical repository without developer knowledge
of an updated copy of the very same repository. If there is no limit on doing this, then it is
recommended to track and delete copies of organization repositories as needed.

Note  Disabling forks completely may slow down the development process as more actions
will be necessary to take in order to fork a repository.

Audit
Verify that forks are tracked and examined regularly.

Remediation
Track forks and examine them regularly.

16

CIS Software Supply Chain Security Guide

1.2.6	 Ensure all code projects are tracked for changes in visibility status

Description
Ensure every change in visibility of projects is tracked.

Rationale
Visibility of projects determines who can access a project and/or fork it: anyone, designated
users, or only members of the organization. If a private project becomes public, this may
point to a potential attack, which can ultimately lead to data loss, the leaking of sensitive
information, and finally to a supply chain attack. It is crucial to track these changes in order to
prevent such incidents.

Audit
Ensure that every change in project visibility is tracked and investigated.

Remediation
Track every change in project visibility and investigate if suspicious behavior occurs.

1.2.7	 Ensure inactive repositories are reviewed and archived periodically

Description
Track inactive repositories and remove them periodically.

Rationale
Inactive repositories (i.e., no new changes introduced for a long period of time) can enlarge the
surface of a potential attack or data leak. These repositories are more likely to be improperly
managed, and thus could possibly be accessed by many users in an organization.

Note  Bug fixes and deployment of necessary changes could prove complicated for
archived repositories.

Audit
Verify that all the repositories in the organization are active, and those that are not are
reviewed or archived.

Remediation
Review all inactive repositories and archive them periodically.

1.3	Contribution Access

This section consists of security recommendations for managing access to the application
code. This includes managing both internal and external access, administrator accounts,
permissions, identification methods, etc. Securing these items is important for software safety,
because every security constraint on access is an obstacle in the way of attacks.

This section differentiates between common user account and admin account. It is important
to understand that due to the high permissions of the admin account, it should be used only
for administrative work and not for everyday tasks.

17

CIS Software Supply Chain Security Guide

1.3.1	 Ensure inactive users are reviewed and removed periodically

Description
Track inactive user accounts and periodically remove them.

Rationale
User accounts that have been inactive for a long period of time are enlarging the surface of
attack. Inactive users with high-level privileges are of particular concern, as these accounts
are more likely to be targets for attackers. This could potentially allow access to large portions
of an organization should such an attack prove successful. It is recommended to remove them
as soon as possible in order to prevent this.

Audit
For each repository in use, verify that all user accounts are active.

Remediation
For each repository in use, review inactive user accounts (members that left the organization,
etc.) and remove them.

1.3.2	 Ensure team creation is limited to specific members

Description
Limit the ability to create teams to trusted and specific users.

Rationale
The ability to create new teams should be restricted to specific members in order to keep the
organization orderly and ensure users have access to only the lowest privilege level necessary.
Teams typically inherit permissions from their parent team; thus, if base permissions are less
restricted and any user has the ability to create a team, a permission leverage could occur
in which certain data is made available to users who should not have access to it. Such a
situation could potentially lead to the creation of shadow teams by an attacker. Restricting
team creation will also reduce additional clutter in the organizational structure, and as a result
will make it easier to track changes and anomalies.

Note  Only specific users will be able to create new teams.

Audit
For every organization, ensure that team creation is limited to specific, trusted users.

Remediation
For every organization, limit team creation to specific, trusted users.

1.3.3	 Ensure minimum number of administrators are set for the organization

Description
Ensure the organization has a minimum number of administrators.

Rationale
Organization administrators have the highest level of permissions, including the ability to
add/remove collaborators, create or delete repositories, change branch protection policy,
and convert to a publicly accessible repository. Due to the permissive access granted to an
organization administrator, it is highly recommended to keep the number of administrator
accounts as minimal as possible.

Audit
Set the minimum number of administrators in your organization.

Remediation
Set the minimum number of administrators in your organization.

18

CIS Software Supply Chain Security Guide

1.3.4	 Ensure Multi-Factor Authentication (MFA) is required for contributors of new code

Description
Require collaborators from outside the organization to use Multi-Factor Authentication (MFA)
in addition to a standard user name and password when authenticating to the source code
management platform.

Rationale
By default, every user authenticates within the system by password only. If the password
of a user is compromised, however, the user account and every repository to which they
have access is in danger of data loss, malicious code commits, and data theft. It is therefore
recommended that each user has Multi-Factor Authentication enabled. This adds an additional
layer of protection to ensure the account remains secure even if the user’s password is
compromised.

Note  A member without enabled Multi-Factor Authentication cannot contribute
to the project. They must enable Multi-Factor Authentication before they can
contribute any code.

Audit
For each repository in use, verify that Multi-Factor Authentication is enforced for contributors
and is the only way to authenticate.

Remediation
For each repository in use, enforce Multi-Factor Authentication as the only way to authenticate
for contributors.

1.3.5	 Ensure the organization is requiring members to use Multi-Factor Authentication (MFA)

Description
Require members of the organization to use Multi-Factor Authentication (MFA) in
addition to a standard user name and password when authenticating to the source code
management platform.

Rationale
By default, every user authenticates within the system by password only. If the password
of a user is compromised, however, the user account and every repository to which they
have access is in danger of data loss, malicious code commits, and data theft. It is therefore
recommended that each user has Multi-Factor Authentication enabled. This adds an additional
layer of protection to ensure the account remains secure even if the user’s password is
compromised.

Note  Members could be removed from the organization if they do not have Multi-Factor
Authentication already enabled. If this is the case, it is recommended that an invitation be
sent to reinstate the user’s access and former privileges. They must enable Multi-Factor
Authentication in order to accept the invitation.

Audit
For every organization that exists in your source code management platform, verify that Multi-
Factor Authentication is enforced and is the only way to authenticate.

Remediation
Use the built-in setting to ensure the enforcement of Multi-Factor Authentication for each
member of the organization.

19

CIS Software Supply Chain Security Guide

1.3.6	 Ensure new members are required to be invited using company-approved email

Description
Existing members of an organization can invite new members to join; however, new members
must only be invited with their company-approved email.

Rationale
Ensuring new members of an organization have company-approved email prevents existing
members of the organization from inviting arbitrary new users to join. Without this verification,
they can invite anyone who is using the organization’s version control system or has an active
email account, thus allowing outside users (and potential threat actors) to easily gain access
to company private code and resources. This practice will subsequently reduce the chance of
human error or typos when inviting a new member.

Note  Existing members would not be able to invite new users who do not have a company-
approved email address.

Audit
For each organization in use, verify for every invitation that the invited email address is
company-approved.

Remediation
For each organization, allow only users with company-approved email to be invited. If a user
was invited without company-approved email, cancel the invitation and investigate the reason
they were invited.

1.3.7	 Ensure two administrators are set for each repository

Description
Ensure every repository has two users with administrative permissions.

Rationale
Repository administrators have the highest permissions to said repository. These include the
ability to add/remove collaborators, change branch protection policy, and convert to a publicly
accessible repository. Due to the liberal access granted to a repository administrator, it is
highly recommended that only two contributors occupy this role.

Note  Removing administrative users from a repository would result in them losing high-
level access to that repository.

Audit
For every repository in use, verify there are two administrators.

Remediation
For every repository in use, set two administrators.

20

CIS Software Supply Chain Security Guide

1.3.8	 Ensure strict base permissions are set for repositories

Description
Base permissions define the permission level automatically granted to all organization
members. Define strict base access permissions for all of the repositories in the organization,
including new ones.

Rationale
Defining strict base permissions is the best practice in every role-based access control
(RBAC) system. If the base permission is high — for example, “Write” permission — every
member of the organization will have “Write” permission to every repository in the
organization. This will apply regardless of the specific permissions a user might need, which
generally differ between organization repositories. The higher the permission, the higher the
risk for incidents such as bad code commit or data breach. It is therefore recommended to set
the base permissions to the strictest level possible.

Note  Users might not be able to access organization repositories or perform some acts as
commits. These specific permissions should be granted individually for each user or team,
as needed.

Audit
Verify that strict base permissions are set for the organization repositories — either “None”
or “Read.”

Remediation
Set strict base permissions for the organization repositories — either “None” or “Read.”

1.3.9	 Ensure an organization’s identity is confirmed with a “Verified” badge

Description
Confirm the domains an organization owns with a “Verified” badge.

Rationale
Verifying the organization’s domains gives developers assurance that a given domain is truly
the official home for a public organization. Attackers can pretend to be an organization and
steal information via a faked/spoofed domain; therefore, the use of a “Verified” badge instills
more confidence and trust between developers and the open-source community.

Audit
Ensure the organization has a “Verified” badge next to its name.

Remediation
Verify the organization’s domains and secure a “Verified” badge next to its name.

21

CIS Software Supply Chain Security Guide

1.3.10	 Ensure Source Code Management (SCM) email notifications are restricted to
verified domains

Description
Restrict the organization’s Source Code Management (SCM) email notifications to approved
domains only.

Rationale
Restricting Source Code Management email notifications to verified domains only prevents
data leaks, as personal emails and custom domains are more prone to account takeover via
DNS hijacking or password breach.

Note  Only members with approved email would be able to receive Source Code
Management notifications.

Audit
Ensure Source Code Management email notifications are restricted to approved domains only.

Remediation
Restrict Source Code Management email notifications to approved domains only.

1.3.11	 Ensure an organization provides SSH certificates

Description
As an organization, become an SSH Certificate Authority (CA) and provide SSH keys for
accessing repositories.

Rationale
There are two ways for remotely working with Source Code Management: via HTTPS, which
requires authentication by user/password, or via SSH, which requires the use of SSH keys.
SSH authentication is better in terms of security; key creation and distribution, however, must
be done in a secure manner. This can be accomplished by implementing SSH certificates,
which are used to validate the server’s identity. A developer will not be able to connect to
a Git server if its key cannot be verified by the SSH Certificate Authority (CA) server. As
an organization, one can verify the SSH certificate signature used to authenticate if a CA
is defined and used. This ensures that only verified developers can access organization
repositories, as their SSH key will be the only one signed by the CA certificate. This reduces
the risk of misuse and malicious code commits.

Note  Members with unverified keys will not be able to clone organization repositories.
Signing, certification, and verification might also slow down the development process.

Audit
Verify that the organization has an SSH Certificate Authority server and provides an SSH
certificate with which to sign keys.

Remediation
Deploy an SSH Certificate Authority server and configure it to provide an SSH certificate with
which to sign keys.

22

CIS Software Supply Chain Security Guide

1.3.12	 Ensure Git access is limited based on IP addresses

Description
Limit Git access based on IP addresses by having an allowlist of IP addresses from which
connection is possible.

Rationale
Allowing access to Git repositories (source code) only from specific IP addresses adds
yet another layer of restriction and reduces the risk of unauthorized connection to the
organization’s assets. This will prevent attackers from accessing Source Code Management
(SCM), as they would first need to know the allowed IP addresses to gain access to them.

Note  Only members with whitelisted IP addresses will be able to access the organization’s
Git repositories.

Audit
For every repository in use, ensure that access is allowed only by IP allowlist, and that access
is forbidden for all others IPs.

Remediation
Create an IP allowlist and forbid all other IPs from accessing the source code.

1.3.13	 Ensure anomalous code behavior is tracked

Description
Track code anomalies.

Rationale
Carefully analyze any code anomalies within the organization. For example, a code anomaly
could be a push made outside of working hours. Such a code push has a higher likelihood
of being the result of an attack, as most if not all members of the organization would likely
be outside the office. Another example is an activity that exceeds the average activity of a
particular user. Tracking and auditing such behaviors creates additional layers of security and
can aid in early detection of potential attacks.

Audit
For every repository in use, ensure code anomalies relevant to the organization are promptly
investigated.

Remediation
For every repository in use, track and investigate anomalous code behavior and activity.

23

CIS Software Supply Chain Security Guide

1.4	Third-Party

This section consists of security recommendations for using third-party applications in the
code repositories.

Applications are typically automated integrations that improve the workflow of an
organization — for example, OAuth applications or Github applications. Those applications are
written by third-party developers and therefore should be reviewed carefully before use. It is
important to monitor their use and permissions because unused applications or unnecessary
high permissions can enlarge the attack surface.

1.4.1	 Ensure administrator approval is required for every installed application

Description
Ensure an administrator approval is required when installing applications.

Rationale
Applications are typically automated integrations that improve the workflow of an
organization. They are written by third-party developers and therefore should be validated
before using in case they are malicious or cannot be trusted. Because administrators are
expected to be the most qualified and trusted members of the organization, they should
review the applications being installed and decide whether they are both trusted and
necessary.

Note  Applications will not be installed without administrator approval.

Audit
Verify that applications are installed only after receiving administrator approval.

Remediation
Require administrator approval for every installed application.

1.4.2	 Ensure stale applications are reviewed and inactive ones are removed

Description
Ensure stale (inactive) applications are reviewed and removed if no longer in use.

Rationale
Applications that have been inactive for a long period of time are enlarging the surface of
attack for data leaks. They are more likely to be improperly managed, and could possibly be
accessed by third-party developers as a tool for collecting internal data of the organization or
repository in which they are installed. It is important to remove these inactive applications as
soon as possible.

Audit
Verify that all the applications in the organization are actively used, and remove those that are
no longer in use.

Remediation
Review all stale applications and periodically remove them.

24

CIS Software Supply Chain Security Guide

1.4.3	 Ensure the access granted to each installed application is limited to the least
privilege needed

Description
Ensure installed application permissions are limited to the lowest privilege level required.

Rationale
Applications are typically automated integrations that can improve the workflow of an
organization. They are written by third-party developers and therefore should be reviewed
carefully before use. It is recommended to use the “principle of least privilege,” granting
applications the lowest level of permissions required. This may prevent harm from a potentially
malicious application with unnecessarily high-level permissions leaking data or modifying
source code.

Audit
Verify that each installed application has the least privilege needed.

Remediation
Grant permissions to applications by the “principle of least privilege,” meaning the lowest
possible permission necessary.

1.5	Code Risks

This section consists of recommendations for many security code scanners. This includes,
for example, looking for hard-coded secrets, common misconfigurations that are vulnerable
to attack or restrictive licenses. Because an application code has a lot of components, it is
important to scan each part that can lead to attack — from secrets to licenses.

1.5.1	 Ensure scanners are in place to identify and prevent sensitive data in code

Description
Detect and prevent sensitive data in code, such as confidential ID numbers, passwords, etc.

Rationale
Having sensitive data in the source code makes it easier for attackers to maliciously use such
information. In order to avoid this, designate scanners to identify and prevent the existence of
sensitive data in the code.

Audit
For every repository in use, verify that scanners are set to identify and prevent the existence of
sensitive data in code.

Remediation
For every repository in use, designate scanners to identify and prevent sensitive data in code.

25

CIS Software Supply Chain Security Guide

1.5.2	 Ensure scanners are in place to secure Continuous Integration (CI) pipeline instructions

Description
Detect and prevent misconfigurations and insecure instructions in Continuous Integration (CI)
pipelines.

Rationale
Detecting and fixing misconfigurations or insecure instructions in CI pipelines decreases the
risk for a successful attack through or on the CI pipeline. The more secure the pipeline, the
less risk there is for potential exposure of sensitive data, a deployment being compromised, or
external access mistakenly being granted to the CI infrastructure or the source code.

Audit
For every CI pipeline, verify that scanners are set to identify and prevent misconfigurations
and insecure instructions.

Remediation
For every CI pipeline, set scanners to identify and prevent misconfigurations and insecure
instructions.

1.5.3	 Ensure scanners are in place to secure Infrastructure as Code (IaC) instructions

Description
Detect and prevent misconfigurations or insecure instructions in Infrastructure as Code (IaC)
files, such as Terraform files.

Rationale
Detecting and fixing misconfigurations and/or insecure instructions in IaC (Infrastructure
as Code) files decreases the risk for data leak or data theft. It is important to secure IaC
instructions in order to prevent further problems of deployment, exposed assets, or improper
configurations, which can ultimately lead to easier ways to attack and steal organization data.

Audit
For every IaC instructions file, verify that scanners are set to identify and prevent
misconfigurations and insecure instructions.

Remediation
For every IaC instructions file, set scanners to identify and prevent misconfigurations and
insecure instructions.

26

CIS Software Supply Chain Security Guide

1.5.4	 Ensure scanners are in place for code vulnerabilities

Description
Detect and prevent known open-source vulnerabilities in the code.

Rationale
Open-source code blocks are used a lot in developed software. This has its own advantages,
but it also has risks. Because the code is open for everyone, attackers can publish or add
malicious code to these open-source code blocks, or use their knowledge to find vulnerability
in an existing code. Detecting and fixing such code vulnerabilities by SCA (software
composition analysis) prevents insecure flaws from reaching production. It gives another
opportunity for developers to secure the source code before it is deployed in production,
where it is far more exposed and vulnerable to attacks.

Audit
For every repository that is in use, verify that scanners are set to identify and prevent code
vulnerabilities.

Remediation
For every repository that is in use, set scanners that will identify and prevent code
vulnerabilities.

1.5.5	 Ensure scanners are in place for open-source vulnerabilities in used packages

Description
Detect, prevent and monitor known open-source vulnerabilities in packages that are
being used.

Rationale
Open-source vulnerabilities might exist before one starts to use a package, but they are also
discovered over time. New attacks and vulnerabilities are announced every now and then. It is
important to keep track of these and to monitor whether the dependencies used are affected
by the recent vulnerability. Detecting and fixing those packages’ vulnerabilities decreases the
attack surface within deployed and running applications that use such packages. It prevents
security flaws from reaching the production environment that could eventually lead to a
security breach.

Audit
For every repository that is in use, verify that scanners are set to monitor, identify, and prevent
open-source vulnerabilities in packages.

Remediation
For every repository that is in use, set scanners that will monitor, identify, and prevent open-
source vulnerabilities in packages.

27

CIS Software Supply Chain Security Guide

1.5.6	 Ensure scanners are in place for open-source license issues in used packages

Description
Detect open-source license problems in used dependencies and fix them.

Rationale
A software license is a legal document that establishes several key conditions between a
software company or developer and a user in order to allow the use of software. Software
licenses have the potential to create code dependencies. Not following the conditions in the
software license can also lead to lawsuits. When using packages with a software license,
especially commercial ones (which are the most permissive), it is important to verify what is
allowed by that license in order to be protected against lawsuits.

Audit
For every package in use, ensure scanners are set to identify open-source license problems.

Remediation
For every package in use, designate scanners to identify open-source license problems
and fix them.

28

CIS Software Supply Chain Security Guide

2	Build Pipelines
This section consists of security recommendations for the management of application build pipelines developed by an
organization.

Build pipelines are a set of instructions dedicated to taking raw files of source code and running a series of tasks on them
to achieve some final artifact as output. This artifact represents the final form of the recent version of software, which
is subsequently packaged for convenient storing, handling, and deploying. Build pipelines are a general name for the
environment in which this compilation process takes place, the pipeline files that orchestrate the process, and all sets of
instructions related to them.

2.1	Build Environment

This section consists of security recommendations for the build pipelines environment.

Build environment is everything related to the infrastructure of the organization’s artifacts
build — the orchestrator, the pipeline executer, where the build workers are running — while
pipeline is a set of commands that runs in the build environment. Most of the build
environment recommendations are relevant for self-hosted build platforms only, such as a
CircleCI that is self-hosted.

2.1.1	 Ensure each pipeline has a single responsibility

Description
Ensure each pipeline has a single responsibility in the build process.

Rationale
Build pipelines generally have access to multiple secrets depending on their purposes. There
are, for example, secrets of the test environment for the test phase, repository, and artifact
credentials for the build phase, etc. Limiting access to these credentials/secrets is therefore
recommended by dividing pipeline responsibilities, as well as having a dedicated pipeline for
each phase with the lowest privilege instead of a single pipeline for all. This will ensure that
any potential damage caused by attacks on a workflow will be limited.

Audit
For each pipeline, ensure it has only one responsibility in the build process.

Remediation
Divide each multi-responsibility pipeline into multiple pipelines, each having a single
responsibility with the least privilege. Additionally, create all new pipelines with a sole purpose
going forward.

29

CIS Software Supply Chain Security Guide

2.1.2	 Ensure all aspects of the pipeline infrastructure and configuration are immutable

Description
Ensure the pipeline orchestrator and its configuration are immutable.

Rationale
An immutable infrastructure is one that cannot be changed during execution of the pipeline.
This can be done, for example, by using Infrastructure as Code for configuring the pipeline and
the pipeline environment. Utilizing such infrastructure creates a more predictable environment
because updates will require redeployment to prevent any previous configuration from
interfering. Because it is dependent on automation, it is easier to revert changes. Testing code
is also simpler because it is based on virtualization. Most importantly, an immutable pipeline
infrastructure ensures that a potential attacker seeking to compromise the build environment
itself would not be able to do so if the orchestrator, its configuration, and any other component
cannot be changed. Verifying that all aspects of the pipeline infrastructure and configuration
are immutable, therefore, keeps them safe from malicious tampering attempts.

Audit
Verify that the pipeline orchestrator, its configuration, and all other aspects of the build
environment are immutable.

Remediation
Use an immutable pipeline orchestrator, and ensure that its configuration and all other aspects
of the build environment are immutable as well.

2.1.3	 Ensure the build environment is logged

Description
Keep build logs of the build environment detailing configuration and all activity within it. Also,
consider storing them in a centralized organizational log store.

Rationale
Logging the environment is important for two primary reasons: one, for debugging and
investigating the environment in case of a bug or security incident; and two, for reproducing
the environment easily when needed. Storing these logs in a centralized organizational log
store allows the organization to generate useful insights and identify anomalies in the build
process faster.

Audit
Verify that the build environment is logged and stored in a centralized organizational log store.

Remediation
Keep logs of the build environment. For example, use the .buildinfo file for Debian build
workers. Also, store the logs in a centralized organizational log store.

30

CIS Software Supply Chain Security Guide

2.1.4	 Ensure the creation of the build environment is automated

Description
Automate the creation of the build environment.

Rationale
Automating the deployment of the build environment reduces the risk for human
mistakes — such as a wrong configuration or exposure of sensitive data — because it requires
less human interaction and intervention. It also eases redeployment of the environment. It
is best to automate with Infrastructure as Code because it offers more control over changes
made to the environment creation configuration and stores to a version control platform.

Audit
Verify that the deployment of the build environment is automated and can be easily
redeployed.

Remediation
Automate the deployment of the build environment.

2.1.5	 Ensure access to build environments is limited

Description
Restrict access to the build environment (orchestrator, pipeline executor, their environment,
etc.) to trusted and qualified users only.

Rationale
A build environment contains sensitive data such as environment variables, secrets, and
the source code itself. Any user that has access to this environment can make changes to
the build process, including changes to the code within it. Restricting access to the build
environment to trusted and qualified users only will reduce the risk for mistakes such as
exposure of secrets or misconfiguration. Limiting access also reduces the number of accounts
that are vulnerable to hijacking in order to potentially harm the build environment.

Note  Reducing the number of users who have access to the build process means those
users would lose their ability to make direct changes to that process.

Audit
Verify each build environment is accessible only to known and authorized users.

Remediation
Restrict access to the build environment to trusted and qualified users.

31

CIS Software Supply Chain Security Guide

2.1.6	 Ensure users must authenticate to access the build environment

Description
Require users to log in to access the build environment — the orchestrator, the pipeline
executer, where the build workers are running, etc.

Rationale
Requiring users to authenticate, and disabling anonymous access to the build environment,
allows an organization to track every action on that environment, good or bad, to its actor. This
will help in recognizing an attack and its attacker because authentication is required.

Note  Anonymous users will not be able to access the build environment.

Audit
Ensure authentication is required to access the build environment.

Remediation
Require authentication to access the build environment and disable anonymous access.

2.2	Build Worker

This section consists of security recommendations for build workers management and use.

Build workers are often called “runners.” They are the infrastructure on which the pipeline runs.
Build workers are considered sensitive because usually they have access to multiple, if not
all, software supply chain components. One worker can run code checkout with source code
management access, run tests, and push to the registry that requires access to it. Also, some
of the pipeline commands running in a build worker can be vulnerable to attack and enlarge
the attack surface. Because of all of that, it is especially important to ensure that the build
workers are protected.

2.2.1	 Ensure build workers are single-used

Description
Use a clean instance of build worker for every pipeline run.

Rationale
Using a clean instance of build worker for every pipeline run eliminates the risks of data theft,
data integrity breaches, and unavailability. It limits the pipeline’s access to data stored on the
file system from previous runs, and the cache is volatile. This prevents malicious changes
from affecting other pipelines or the Continuous Integration/Continuous Delivery (CI/CD)
system itself.

Note  Data and cache will not be saved in different pipeline runs.

Audit
Ensure that every pipeline that is being run has its own clean, new runner.

Remediation
Create a clean build worker for every pipeline that is being run, or use build platform-hosted
runners, as they typically offer a clean instance for every run.

32

CIS Software Supply Chain Security Guide

2.2.2	 Ensure build worker environments and commands are passed and not pulled

Description
A worker’s environment can be passed (for example, a pod in a Kubernetes cluster in which
an environment variable is passed to it). It also can be pulled, like a virtual machine that is
installing a package. Ensure that the environment and commands are passed to the workers
and not pulled from it.

Rationale
Passing an environment means additional configuration happens in the build time phase
and not in run time. It will also pass locally and not remotely. Passing a worker environment,
instead of pulling it from an outer source, reduces the possibility for an attacker to gain access
and potentially pull malicious code into it. By passing locally and not pulling from remote,
there is also less chance of an attack based on the remote connection, such as a man-in-
the-middle or malicious scripts that can run from remote. This therefore prevents possible
infection of the build worker.

Audit
For each build worker, ensure its environment and commands are passed and not pulled.

Remediation
For each build worker, pass its environment and commands to it instead of pulling it.

2.2.3	 Ensure the duties of each build worker are segregated

Description
Separate responsibilities in the build workflow, such as testing, compiling, pushing artifacts,
etc., to different build workers so that each worker will have a single duty.

Rationale
Separating duties and allocating them to many workers makes it easier to verify each step in
the build process and ensure there is no corruption. It also limits the effect of an attack on a
build worker, as such an attack would be less critical if the worker has less access and fewer
duties that are subject to harm.

Audit
For each build worker, ensure it has the least responsibility possible, preferably only one duty.

Remediation
For each build worker, limit its responsibility to one duty.

33

CIS Software Supply Chain Security Guide

2.2.4	 Ensure build workers have minimal network connectivity

Description
Ensure that build workers have minimal network connectivity.

Rationale
Restricting the network connectivity of build workers decreases the possibility that an
attacker would be capable of entering the organization from the outside. If the build workers
are connected to the public internet without any restriction, it is far simpler for attackers to
compromise them. Limiting network connectivity between build workers also protects the
organization in case an attacker was successful and subsequently attempts to spread the
attack to other components of the environment.

Note  Developers will not have connectivity to every resource they might need from the
outside. Workers will also only be able to exchange data through shareable storage.

Audit
Verify that build workers, environment, and any other components have only the required
minimum of network connectivity.

Remediation
Limit the network connectivity of build workers, environment, and any other components to
the necessary minimum.

2.2.5	 Ensure run-time security is enforced for build workers

Description
Add traces to build workers’ operating systems and installed applications so that in run time,
collected events can be analyzed to detect suspicious behavior patterns and malware.

Rationale
Build workers are exposed to data exfiltration attacks, code injection attacks, and more while
running. It is important to secure them from such attacks by enforcing run-time security on the
build worker itself. This will identify attempted attacks in real time and prevent them.

Audit
Verify that a run-time security solution is enforced on every active build worker.

Remediation
Deploy and enforce a run-time security solution on build workers.

34

CIS Software Supply Chain Security Guide

2.2.6	 Ensure build workers are automatically scanned for vulnerabilities

Description
Scan build workers for vulnerabilities. It is recommended that this be done automatically.

Rationale
Automatic scanning for vulnerabilities detects known weaknesses in environmental sources
in use, such as docker images or kernel versions. Such vulnerabilities can lead to a massive
breach if these environments are not replaced as fast as possible, since attackers also
know about these vulnerabilities and often try to take advantage of them. Setting automatic
scanning that scans environmental sources ensures that if any new vulnerability is revealed, it
can be replaced quickly and easily. This protects the worker from being exposed to attacks.

Audit
For each build worker, ensure the environmental sources it uses are scanned for
vulnerabilities.

Remediation
For each build worker, automatically scan its environmental sources, such as docker images,
for vulnerabilities.

2.2.7	 Ensure build workers’ deployment configuration is stored in a version control platform

Description
Store the deployment configuration of build workers in a version control platform, such
as Github.

Rationale
Build workers are a sensitive part of the build phase. They generally have access to the code
repository, the Continuous Integration platform, the deployment platform, etc. This means
that an attacker gaining access to a build worker may compromise other platforms in the
organization and cause a major incident. One thing that can protect workers is to ensure
that their deployment configuration is safe and well-configured. Storing the deployment
configuration in version control enables more observability of these configurations because
everything is catalogued in a single place. It adds another layer of security, as every change
will be reviewed and noticed, and thus malicious changes will theoretically occur less. In the
case of a mistake, bug, or security incident, it also offers an easier way to “revert” back to a
safe version or add a “hot fix” quickly.

Note  Changes in deployment configuration may only be applied by declaration in the
version control platform. This could potentially slow down the development process.

Audit
Verify that the deployment configuration of build workers is stored in a version
control platform.

Remediation
Document and store every deployment configuration of build workers in a version
control platform.

35

CIS Software Supply Chain Security Guide

2.2.8	 Ensure resource consumption of build workers is monitored

Description
Monitor the resource consumption of build workers and set alerts for high consumption that
can lead to resource exhaustion.

Rationale
Resource exhaustion is when machine resources or services are highly consumed until
exhausted. Resource exhaustion may lead to DOS (Denial of Service). When such a situation
happens to build workers, it slows down and even stops the build process, which harms
the production of artifacts and the organization’s ability to deliver software on schedule. To
prevent that, it is recommended to monitor resource consumption in the build workers and
set alerts to notify when they are highly consumed. That way, resource exhaustion can be
acknowledged and prevented at an early stage.

Audit
Verify that there is monitoring of resource consumption for each build worker.

Remediation
Set resource consumption monitoring for each build worker.

2.3	Pipeline Instructions

This section consists of security recommendations for pipeline instructions and commands.

Pipeline instructions are dedicated to taking raw files of source code and running a series
of tasks on them to achieve some final artifact as output. They are most of the time written
by third-party developers so they should be treated carefully and can also be vulnerable to
attack in certain situations. Pipeline instructions files are considered very sensitive, and it is
important to secure all their aspects — instructions, access, etc.

2.3.1	 Ensure all build steps are defined as code

Description
Use pipeline as code for build pipelines and their defined steps.

Rationale
Storing pipeline instructions as code in a version control system means automation of the
build steps and less room for human error, which could potentially lead to a security breach.
Additionally, it creates the ability to revert to a previous pipeline configuration in order to
pinpoint the affected change should a malicious incident occur.

Audit
Verify that all build steps are defined as code and stored in a version control system.

Remediation
Convert pipeline instructions into code-based syntax and upload them to the organization’s
version control platform.

36

CIS Software Supply Chain Security Guide

2.3.2	 Ensure steps have clearly defined build stage input and output

Description
Define clear expected input and output for each build stage.

Rationale
In order to have more control over data flow in the build pipeline, clearly define the input and
output of the pipeline steps. If anything malicious happens during the build stage, it will be
recognized more easily and stand out as an anomaly.

Audit
For each build stage, verify that the expected input and output are clearly defined.

Remediation
For each build stage, clearly define what is expected for input and output.

2.3.3	 Ensure output is written to a separate, secured storage repository

Description
Write pipeline output artifacts to a secured storage repository.

Rationale
To maintain output artifacts securely and reduce the potential surface for attack, store such
artifacts separately in secure storage. This separation enforces the Single Responsibility
Principle by ensuring the orchestration platform will not be the same as the artifact storage,
which reduces the potential harm of an attack. Using the same security considerations as the
input (for example, the source code) will protect artifacts stored and will make it harder for a
malicious actor to successfully execute an attack.

Audit
For each pipeline that produces output artifacts, ensure that they are written to a secured
storage repository.

Remediation
For each pipeline that produces output artifacts, write them to a secured storage repository.

2.3.4	 Ensure changes to pipeline files are tracked and reviewed

Description
Track and review changes to pipeline files.

Rationale
Pipeline files are sensitive files. They have the ability to access sensitive data and control the
build process, thus it is just as important to review changes to pipeline files as it is to verify
source code. Malicious actors can potentially add harmful code to these files, which may lead
to sensitive data exposure and hijacking of the build environment or artifacts.

Audit
For each pipeline file, ensure changes to it are being tracked and reviewed.

Remediation
For each pipeline file, track changes to it and review them.

37

CIS Software Supply Chain Security Guide

2.3.5	 Ensure access to build process triggering is minimized

Description
Restrict access to pipeline triggers.

Rationale
Build pipelines are used for multiple reasons. Some are very sensitive, such as pipelines
that deploy to production. In order to protect the environment from malicious acts or human
mistakes, such as a developer deploying a bug to production, it is important to apply the
“principle of least privilege” to pipeline triggering. This principle requires restrictions placed
on which users can run which pipeline. It allows for sensitive pipelines to only be run by
administrators, who are generally the most trusted and skilled members of the organization.

Audit
For every pipeline in use, verify only the necessary users have permission to trigger it.

Remediation
For every pipeline in use, grant only the necessary users permission to trigger it.

2.3.6	 Ensure pipelines are automatically scanned for misconfigurations

Description
Scan the pipeline for misconfigurations. It is recommended that this be performed
automatically.

Rationale
Automatic scans for misconfigurations detect human mistakes and misconfigured tasks.
This protects the environment from backdoors caused by such mistakes, which create easier
access for attackers. For example, a task that mistakenly configures credentials to persist on
the disk makes it easier for an attacker to steal them. This type of incident can be prevented by
auto-scanning.

Audit
For each pipeline, verify that it is automatically scanned for misconfigurations.

Remediation
For each pipeline, set automated misconfiguration scanning.

2.3.7	 Ensure pipelines are automatically scanned for vulnerabilities

Description
Scan pipelines for vulnerabilities. It is recommended that this be implemented automatically.

Rationale
Automatic scanning for vulnerabilities detects known vulnerabilities in pipeline instructions
and components, allowing faster patching in case one is found. These vulnerabilities can lead
to a potentially massive breach if not handled as fast as possible, as attackers might also be
aware of such vulnerabilities.

Audit
For each pipeline, verify that it is automatically scanned for vulnerabilities.

Remediation
For each pipeline, set automated vulnerability scanning.

38

CIS Software Supply Chain Security Guide

2.3.8	 Ensure scanners are in place to identify and prevent sensitive data in pipeline files
(Automated)

Description
Detect and prevent sensitive data, such as confidential ID numbers, passwords, etc., in
pipelines.

Rationale
Sensitive data in pipeline configuration, such as cloud provider credentials or repository
credentials, create vulnerabilities with which malicious actors could steal such information
if they gain access to a pipeline. In order to mitigate this, set scanners that will identify and
prevent the existence of sensitive data in the pipeline.

Audit
For every pipeline that is in use, verify that scanners are set to identify and prevent the
existence of sensitive data within it.

Remediation
For every pipeline that is in use, set scanners that will identify and prevent sensitive data
within it.

2.4	Pipeline Integrity

This section consists of security recommendations for keeping pipeline integrity.

Integrity means ensuring that the pipelines, the dependencies they use, and their artifacts
are all authentic and what they intended to be. Securing the pipeline integrity is to verify that
every change and process running during the build pipeline run is what it is supposed to be.
One way to do that, for example, is to lock each dependency to a certain secured version. It is
important to insist on securing that because this is the way to set trust with the customer.

2.4.1	 Ensure all artifacts on all releases are signed

Description
Sign all artifacts in all releases with user or organization keys.

Rationale
Signing artifacts is used to validate both their integrity and security. Organizations signal that
artifacts may be trusted and they themselves produced them by ensuring that every artifact
is properly signed. The presence of this signature also makes potentially malicious activity far
more difficult.

Audit
Ensure every artifact in every release is signed.

Remediation
For every artifact in every release, verify that all are properly signed.

39

CIS Software Supply Chain Security Guide

2.4.2	 Ensure all external dependencies used in the build process are locked

Description
External dependencies may be public packages needed in the pipeline, or perhaps the
public image being used for the build worker. Lock these external dependencies in every
build pipeline.

Rationale
External dependencies are sources of code that are not under organizational control.
They might be intentionally or unintentionally infected with malicious code or have known
vulnerabilities, which could result in sensitive data exposure, data harvesting, or the erosion
of trust in an organization. Locking each external dependency to a specific, safe version gives
more control and less chance for risk.

Audit
Ensure every external dependency being used in pipelines is locked.

Remediation
For all external dependencies being used in pipelines, verify they are locked.

2.4.3	 Ensure dependencies are validated before being used

Description
Validate every dependency of the pipeline before use.

Rationale
To ensure that a dependency used in a pipeline is trusted and has not been infected by a
malicious actor (e.g., the Codecov incident), validate dependencies before using them. This
can be accomplished by comparing the checksum of the dependency to its checksum in a
trusted source. If a difference arises, this is a sign that an unknown actor has interfered and
may have added malevolent code. If this dependency is used, it will infect the environment,
which could end in a massive breach and leave the organization exposed to data leaks, etc.

Audit
For every dependency used in every pipeline, ensure it has been validated.

Remediation
For every dependency used in every pipeline, validate each one.

2.4.4	 Ensure the build pipeline creates reproducible artifacts

Description
Verify that the build pipeline creates reproducible artifacts, meaning that an artifact of the
build pipeline is the same in every run when given the same input.

Rationale
A reproducible build is a build that produces the same artifact when given the same input
data. Ensuring that the build pipeline produces the same artifact when given the same input
helps verify that no change has been made to the artifact. This action allows an organization
to trust that its artifacts are built only from safe code that has been reviewed and tested and
has not been tainted or changed abruptly.

Audit
Ensure that build pipelines create reproducible artifacts.

Remediation
Create build pipelines that produce the same artifact given the same input (for example,
artifacts that do not rely on timestamps).

40

CIS Software Supply Chain Security Guide

2.4.5	 Ensure pipeline steps produce a Software Bill of Materials (SBOM)

Description
An SBOM is a file that specifies each component of software or a build process. Generate an
SBOM after each run of a pipeline.

Rationale
Generating an SBOM after each run of a pipeline will validate the integrity and security of that
pipeline. Recording every step or component role in the pipeline ensures that no malicious
acts have been committed during the pipeline’s run.

Audit
For each pipeline, ensure it produces an SBOM on every run.

Remediation
For each pipeline, configure it to produce an SBOM on every run.

2.4.6	 Ensure pipeline steps sign the SBOM produced

Description
An SBOM is a file that specifies each component of software or a build process. It should be
generated after every pipeline run. After it is generated, it must then be signed.

Rationale
An SBOM is a file used to validate the integrity and security of a build pipeline. Signing it
ensures that no one tampered with the file when it was delivered. Such interference can
happen if someone tries to hide unusual activity. Validating the SBOM signature can detect
this activity and prevent much greater incident.

Audit
For each pipeline, ensure it signs the SBOM it produces on every run.

Remediation
For each pipeline, configure it to sign its produced SBOM on every run.

41

CIS Software Supply Chain Security Guide

3	Dependencies
This section consists of security recommendations for the management of various dependencies introduced as part of the
software build and release process. These are comprised of anything that goes into application code or is used by build
pipelines themselves.

Dependencies are a huge part of the software supply chain, as they are integrated in a lot of important phases. They are
often written by third-party developers and might be vulnerable to certain attacks, such as the “log4j” attack. Because of
that it is particularly important to secure them and their use in the supply chain.

3.1	Third-Party Packages

This section consists of security recommendations for the use and management of third-party
dependencies and packages. As a consumer of various third-party packages, you need to
ensure certain conditions exist to trust them and use them safely. Using third-party packages
affects not only the software, but also its customers, so it is important to carefully examine
each one of these packages.

3.1.1	 Ensure third-party artifacts and open-source libraries are verified

Description
Ensure third-party artifacts and open-source libraries in use are trusted and verified.

Rationale
Verify third-party artifacts used in code are trusted and have not been infected by a malicious
actor before use. This can be accomplished, for example, by comparing the checksum of the
dependency to its checksum in a trusted source. If a difference arises, this may be a sign that
someone interfered and added malicious code. If this dependency is used, it will infect the
environment and could end in a massive breach, leaving the organization exposed to data
leaks and more.

Audit
For every artifact and open-source library, ensure verification before use.

Remediation
Verify every artifact and open-source library in use.

42

CIS Software Supply Chain Security Guide

3.1.2	 Ensure SBOM is required from all third-party suppliers

Description
An SBOM is a file that specifies each component of software or a build process. Require an
SBOM from every third-party provider.

Rationale
An SBOM for every third-party artifact helps to ensure an artifact is safe to use and fully
compliant. This file lists all important metadata, especially all the dependencies of an artifact,
and allows for verification of each dependency. If one of the dependencies/artifacts is
attacked or has a new vulnerability (e.g., the “SolarWinds” or even “log4j” attack), it is easier to
detect what has been affected by this incident because dependencies in use are listed in the
SBOM file.

Audit
For every third-party dependency in use, ensure it has an SBOM.

Remediation
For every third-party dependency in use, require an SBOM from its supplier.

3.1.3	 Ensure signed metadata of the build process is required and verified

Description
Require and verify signed metadata of the build process for all dependencies in use.

Rationale
The metadata of a build process lists every action that took place during an artifact build. It is
used to ensure that an artifact has not been compromised during the build, that no malicious
code was injected into it, and that no nefarious dependencies were added during the build
phase. This creates trust between user and vendor that the software supplied is exactly the
software that was promised. Signing this metadata adds a checksum to ensure there have
been no revisions since its creation, as this checksum changes when the metadata is altered.
Verification of proper metadata signature with Certificate Authority confirms that the signature
was produced by a trusted entity.

Audit
For each artifact used, ensure it was supplied with verified and signed metadata of its build
process. The signature should be the organizational signature and should be verifiable by
common Certificate Authority servers.

Remediation
For each artifact in use, require and verify signed metadata of the build process.

43

CIS Software Supply Chain Security Guide

3.1.4	 Ensure dependencies are monitored between open-source components

Description
Monitor, or ask software suppliers to monitor, dependencies between open-source
components in use.

Rationale
Monitoring dependencies between open-source components helps to detect if software has
fallen victim to attack on a common open-source component. Swift detection can aid in quick
application of a fix. It also helps find potential compliance problems with components usage.
Some dependencies might not be compatible with the organization’s policies, and other
dependencies might have a license that is not compatible with how the organization uses this
specific dependency. If dependencies are monitored, such situations can be detected and
mitigated sooner, potentially deterring malicious attacks.

Audit
For each open-source component, ensure its dependencies are monitored.

Remediation
For each open-source component, monitor its dependencies.

3.1.5	 Ensure trusted package managers and repositories are defined and prioritized

Description
Prioritize trusted package registries over others when pulling a package.

Rationale
When pulling a package by name, the package manager might look for it in several package
registries, some of which may be untrusted or badly configured. If the package is pulled from
such a registry, there is a higher likelihood that it could prove malicious. In order to avoid this,
configure packages to be pulled from trusted package registries.

Audit
For each package registry in use, ensure it is trusted.

Remediation
For each package to be downloaded, configure it to be downloaded from a trusted source.

3.1.6	 Ensure a signed SBOM of the code is supplied

Description
An SBOM is a file that specifies each component of software or a build process. When using a
dependency, demand its SBOM and ensure it is signed for validation purposes.

Rationale
An SBOM creates trust between its provider and its users by ensuring that the software
supplied is the software described, without any potential interference in between. Signing
an SBOM creates a checksum for it, which will change if the SBOM’s content was changed.
With that checksum, a software user can be certain nothing had happened to it during the
supply chain, engendering trust in the software. When there is no such trust in the software,
the risk surface is increased because one cannot know if the software is potentially vulnerable.
Demanding a signed SBOM and validating it decreases that risk.

Audit
For every artifact supplied, ensure it has a validated, signed SBOM.

Remediation
For every artifact supplied, require, and verify a signed SBOM from its supplier.

44

CIS Software Supply Chain Security Guide

3.1.7	 Ensure dependencies are pinned to a specific, verified version

Description
Pin dependencies to a specific version. Avoid using the “latest” tag or broad version.

Rationale
When using a wildcard version of a package, or the “latest” tag, the risk of encountering a
new, potentially malicious package increases. The “latest” tag pulls the last package pushed
to the registry. This means that if an attacker pushes a new, malicious package successfully
to the registry, the next user who pulls the “latest” will pull it and risk attack. This same rule
applies to a wildcard version. Assuming one is using version v1.*, it will install the latest version
of the major version 1, meaning that if an attacker can push a malicious package with that
same version, those using it will be subject to possible attack. By using a secure, verified
version, use is restricted to this version only and no other may be pulled, decreasing the risk
for any malicious package.

Audit
For every dependency in use, ensure it is pinned to a specific version.

Remediation
For every dependency in use, pin to a specific version.

3.1.8	 Ensure all packages used are more than 60 days old

Description
Use packages that are more than 60 days old.

Rationale
Third-party packages are a major risk since an organization cannot control their source code,
and there is always the possibility these packages could be malicious. It is therefore good
practice to remain cautious with any third-party or open-source package, especially new
ones, until they can be verified that they are safe to use. Avoiding a new package allows the
organization to fully examine it, its maintainer, and its behavior, and gives enough time to
determine whether or not to use it.

Note  Developers may not use packages that are less than 60 days old.

Audit
For every package used, ensure it is more than 60 days old.

Remediation
If a package used is less than 60 days old, stop using it and find another solution.

3.2	Validate Packages

This section consists of security recommendations for managing package validations and
checks. Third-party packages and dependencies might put the organization in danger, not
only by being vulnerable to attacks, but also by being improperly used and harming license
conditions. To protect the software supply chain from these dangers, it is important to validate
packages and understand how and if to use them. This section’s recommendations cover
this topic.

45

CIS Software Supply Chain Security Guide

3.2.1	 Ensure an organization-wide dependency usage policy is enforced

Description
Enforce a policy for dependency usage across the organization. For example, disallow the use
of packages less than 60 days old.

Rationale
Enforcing a policy for dependency usage in an organization helps to manage dependencies
across the organization and ensure that all usage is compliant with security policy. If, for
example, the policy limits the package managers that can be used, enforcing it will make sure
that every dependency is installed only from these package managers, and limit the risk of
installing from any untrusted source.

Audit
Verify that a policy for dependency usage is enforced across the organization.

Remediation
Enforce policies for dependency usage across the organization.

3.2.2	 Ensure packages are automatically scanned for known vulnerabilities

Description
Automatically scan every package for vulnerabilities.

Rationale
Automatic scanning for vulnerabilities detects known vulnerabilities in packages and
dependencies in use, allowing faster patching when one is found. Such vulnerabilities can lead
to a massive breach if not handled as fast as possible, as attackers will also know about those
vulnerabilities and swiftly try to take advantage of them. Scanning packages regularly for
vulnerabilities can also verify usage compliance with the organization’s security policy.

Audit
Ensure automatic scanning of packages for vulnerabilities is enabled.

Remediation
Set automatic scanning of packages for vulnerabilities.

3.2.3	 Ensure packages are automatically scanned for license implications

Description
A software license is a document that provides legal conditions and guidelines for the use and
distribution of software, usually defined by the author. It is recommended to scan for any legal
implications automatically.

Rationale
When using packages with software licenses, especially commercial ones which tend to be
the strictest, it is important to verify that the use of the package meets the conditions of the
license. If the use of the package violates the licensing agreement, it exposes the organization
to possible lawsuits. Scanning used packages for such license implications leads to faster
detection and quicker fixes of such violations, and also reduces the risk for a lawsuit.

Audit
Ensure license implication rules are configured and are scanned automatically.

Remediation
Set automatic package scanning for license implications.

46

CIS Software Supply Chain Security Guide

3.2.4	 Ensure packages are automatically scanned for ownership change

Description
Scan every package automatically for ownership change.

Rationale
A change in package ownership is not a regular action. In some cases it can lead to a massive
problem (for example, the “event-stream” incident). Open-source contributors are not always
trusted, since by its very nature everyone can contribute. This means malicious actors can
become contributors as well. Package maintainers might transfer their ownership to someone
they do not know if maintaining the package is too much for them, in some cases without
the other user’s knowledge. This has led to known security breaches in the past. It is best to
be aware of such activity as soon as it happens and to carefully examine the situation before
continuing using the package in order to determine its safety.

Audit
Ensure automatic scanning of packages for ownership change is set.

Remediation
Set automatic scanning of packages for ownership change.

47

CIS Software Supply Chain Security Guide

4	Artifacts
This section consists of security recommendations for the management of artifacts produced
by build pipelines, as well as ones used by the application in the build process itself.

Artifacts are packaged versions of software. They are stored in package registries (or artifact
managers) and require securing from the moment they are created, through the time they are
copied and updated, and up to deployment to their relevant environment.

4.1	Verification

This section consists of security recommendations for managing verification of artifacts.

When build artifacts are being pushed to the registry, a lot of different attacks can happen:
a malicious artifact with the same name can be pushed, the artifact can be stolen over the
network or if the registry is hacked, and others. It is important to secure artifacts by ensuring
that various verification methods, listed in the recommendations in this section, are available.

4.1.1	 Ensure all artifacts are signed by the build pipeline itself

Description
Configure the build pipeline to sign every artifact it produces and verify that each artifact has
the appropriate signature.

Rationale
A cryptographic signature can be used to verify artifact authenticity. The signature created
with a certain key is unique and not reversible, thus making it unique to the author. This means
that an attacker tampering with a signed artifact will be noticed immediately using a simple
verification step because the signature will change. Signing artifacts by the build pipeline that
produces them ensures the integrity of those artifacts.

Audit
Verify that the build pipeline signs every new artifact it produces and all artifacts are signed.

Remediation
Sign every artifact produced with the build pipeline that created it. Configure the build pipeline
to sign each artifact.

4.1.2	 Ensure artifacts are encrypted before distribution

Description
Encrypt artifacts before they are distributed and ensure only trusted platforms have decryption
capabilities.

Rationale
Build artifacts might contain sensitive data such as production configurations. In order to
protect them and decrease the risk for breach, it is recommended to encrypt them before
delivery. Encryption makes data unreadable, so even if attackers gain access to these artifacts,
they will not be able to harvest sensitive data from them without the decryption key.

Audit
Ensure every artifact is encrypted before it is delivered.

Remediation
Encrypt every artifact before distribution.

48

CIS Software Supply Chain Security Guide

4.1.3	 Ensure only authorized platforms have decryption capabilities of artifacts

Description
Grant decryption capabilities of artifacts only to trusted and authorized platforms.

Rationale
Build artifacts might contain sensitive data such as production configuration. To protect them
and decrease the risk of a breach, it is recommended to encrypt them before delivery. This will
make them unreadable for every unauthorized user who does not have the decryption key.
By implementing this, the decryption capabilities become overly sensitive in order to prevent
a data leak or theft. Ensuring that only trusted and authorized platforms can decrypt the
organization’s packages decreases the possibility for an attacker to gain access to the critical
data in artifacts.

Audit
Ensure only trusted and authorized platforms have decryption capabilities of the organization’s
artifacts.

Remediation
Grant decryption capabilities of the organization’s artifacts only for trusted and authorized
platforms.

4.2	Access to Artifacts

This section consists of security recommendations for access management of artifacts.

Artifacts are often stored in registries, some external and some internal. Those registries
have user entities that control access and permissions. Artifacts are considered sensitive,
because they are being delivered to the customer, and are prone to many attacks: data theft,
dependency confusion, malicious packages, and more. That is why their access management
should be restrictive and careful.

4.2.1	 Ensure factor authorization to certify certain artifacts is limited

Description
Software certification is used to verify the safety of certain software usage and to establish
trust between the supplier and the consumer. Any artifact can be certified. Limit which
artifacts any given factor is authorized to certify.

Rationale
Artifact certification is a powerful tool in establishing trust. Clients use a software certificate
to verify that the artifact is safe to use according to their security policies. Because of this,
certifying artifacts is considered sensitive. If an artifact is for debugging or internal use, or if it
was compromised, the organization would not want certification. An attacker gaining access
to both certification factor and the artifact registry might also be able to certify its own artifact
and cause a major breach. To prevent these issues, limit which artifacts can be certified by
which platform so there will be minimal access to certification.

Audit
Ensure only certain artifacts can be certified by certain parties.

Remediation
Limit which artifact can be certified by which factor.

49

CIS Software Supply Chain Security Guide

4.2.2	 Ensure number of permitted users who may upload new artifacts is minimized

Description
Minimize the ability to upload artifacts to the lowest number of trusted users possible.

Rationale
Artifacts might contain sensitive data. Even the simplest mistake can also lead to trust
issues with customers and harm the integrity of the product. To decrease these risks, allow
only trusted and qualified users to upload new artifacts. Those users are less likely to make
mistakes. Having the lowest number of such users possible will also decrease the risk of
hacked user accounts, which could lead to a massive breach or artifact compromise

Audit
Ensure only trusted and qualified users can upload new artifacts, and that their number is the
lowest possible.

Remediation
Allow only trusted and qualified users to upload new artifacts, and limit them in number.

4.2.3	 Ensure user access to the package registry utilizes Multi-Factor Authentication (MFA)

Description
Enforce Multi-Factor Authentication (MFA) for user access to the package registry.

Rationale
By default, every user authenticates to the system by password only. If a user’s password
is compromised, the user account and all its related packages are in danger of data theft
and malicious builds. It is therefore recommended that each user enables Multi-Factor
Authentication. This additional step guarantees that the account stays secure even if the user’s
password is compromised, as it adds another layer of authentication.

Audit
For each package registry in use, verify that Multi-Factor Authentication is enforced and is the
only way to authenticate.

Remediation
For each package registry in use, enforce Multi-Factor Authentication as the only way to
authenticate.

50

CIS Software Supply Chain Security Guide

4.2.4	 Ensure user management of the package registry is not local

Description
Manage users and their access to the package registry with an external authentication server
and not with the package registry itself.

Rationale
Some package registries offer a tool for user management, aside from the main Lightweight
Directory Access Protocol (LDAP) or Active Directory (AD) server of the organization. That
tool usually offers simple authentication and role-based permissions, which might not be
granular enough. Having multiple user management tools in the organization could result in
confusion and privilege escalation, as there will be more to manage. To avoid a situation where
users escalate their privileges because someone missed them, manage user access to the
package registry via the main authentication server and not locally on the package registry.

Audit
For each package registry, verify that its user access is not managed locally, but instead with
the main authentication server of the organization.

Remediation
For each package registry, use the main authentication server of the organization for user
management and do not manage locally.

4.2.5	 Ensure anonymous access to artifacts is revoked

Description
Disable anonymous access to artifacts.

Rationale
Most artifact repositories support anonymous users, such as JFrog and Nexus. For
unauthorized users, this defaults to a user with only read permissions, though more
permissions may be added. Disable the option to view artifacts as “Anonymous User” in
order to protect private artifacts from being exposed. This way, only trusted and authorized
members will be able to access artifacts.

Note  Only logged and authorized users will be able to access artifacts.

Audit
For each artifact or package manager in use, verify that anonymous access is disabled.

Remediation
Disable the anonymous access option on every artifact or package manager in use.

4.3	Package Registries

This section consists of security recommendations for management of package registries and
artifacts that are stored in them.

Package registries are where the organization artifacts are stored. To keep an artifact safe, you
must keep the registry where it is stored safe too. Furthermore, you need to ensure that every
artifact that reaches the registry is safe to use and does not put the registry in danger.

51

CIS Software Supply Chain Security Guide

4.3.1	 Ensure all signed artifacts are validated upon uploading the package registry

Description
Validate artifact signatures before uploading to the package registry.

Rationale
Cryptographic signature is a tool to verify artifact authenticity. Every artifact is supposed to
be signed by its creator in order to confirm that it was not compromised before reaching the
client. Validating an artifact signature before delivering it is another level of protection that
ensures the signature has not been changed, meaning no one tried or succeeded in tampering
with the artifact. This creates trust between the supplier and the client.

Audit
Ensure every artifact in the package registry has been validated with its signature.

Remediation
Validate every artifact with its signature before uploading it to the package registry. It is
recommended to do so automatically.

4.3.2	 Ensure all versions of an existing artifact have their signatures validated

Description
Validate the signatures of all versions of an existing artifact.

Rationale
In order to be certain a version of an existing and trusted artifact is not malicious or delivered
by someone looking to interfere with the supply chain, it is a good practice to validate the
signatures of each version. Doing so decreases the risk of using a compromised artifact, which
might lead to a breach.

Audit
For each artifact, ensure that all of its versions are signed and validated before it is
uploaded or used.

Remediation
For each artifact, sign and validate each version before uploading or using the artifact.

4.3.3	 Ensure changes in package registry configuration are audited

Description
Audit changes of the package registry configuration.

Rationale
The package registry is a crucial component in the software supply chain. It stores artifacts
with potentially sensitive data that will eventually be deployed and used in production. Every
change made to the package registry configuration must be examined carefully to ensure no
exposure of the registry’s sensitive data. This examination also ensures no malicious actors
have performed modifications to a stored artifact. Auditing the configuration and its changes
helps in decreasing such risks.

Audit
Verify that all changes to the package registry configuration are audited.

Remediation
Audit the changes to the package registry configuration.

52

CIS Software Supply Chain Security Guide

4.3.4	 Ensure webhooks of the package registry are secured

Description
Use secured webhooks of the package registry.

Rationale
Webhooks are used for triggering an HTTP request based on an action made in the platform.
Typically, package registries feature webhooks when a package receives an update. Since
webhooks are an HTTP POST request, they can be malformed if not secured over SSL. To
prevent a potential hack and compromise of the webhook or to the registry or web server
accepting the request, use only secured webhooks.

Audit
For each webhook in use, ensure it is secured (HTTPS).

Remediation
For each webhook in use, change it to secured (over HTTPS).

4.4	Origin Traceability

This section consists of security recommendations for managing the traceability of artifacts.
This means ensuring that both the organization and customers know where this artifact came
from, such as with an SBOM, and also verifying that it came from the registry it was supposed
to come from.

4.4.1	 Ensure artifacts contain information about their origin

Description
When delivering artifacts, ensure they have information about their origin. This may be done
by providing an SBOM or some metadata files.

Rationale
Information about artifact origin can be used for verification purposes. Having this kind of
information allows the user to decide if the organization supplying the artifact is trusted.
In a case of potential vulnerability or version update, this can be used to verify that the
organization issuing it is the actual organization of origin and not someone else. If users need
to report problems with the artifact, they will have an address to contact as well.

Audit
For each artifact, ensure it has information about its origin.

Remediation
For each artifact supplied, provide information about its origin. For each artifact in use, ask for
information about its origin.

53

CIS Software Supply Chain Security Guide

4.4.2	 Ensure private artifacts are not allowed to be pulled from external registries

Description
Proxy registries can proxy requests of internal packages to a public registry if grouped with an
internal hosted registry. Block the option to request private packages from the proxy registry
so that they will be pulled only from the hosted registry.

Rationale
When a proxy registry receives a request for private packages, it looks for them within public
registries. This can lead to potential name shadowing, meaning that if a malicious package
has the same name as the internal one, it will therefore be pulled, which can lead to a massive
breach or malevolent code running in private, closed environments. To protect the internal
environment from such incidents, it is recommended to block the option to pull private
packages from the proxy and public registries.

Note  Public packages with similar names to private ones will not be able to be pulled.

Audit
For every proxy registry in use, ensure the pulling of internal packages is blocked.

Remediation
For each proxy registry in use, block the option to pull internal packages.

54

CIS Software Supply Chain Security Guide

5	Deployment
This section consists of security recommendations for management of the release process, the application deployment,
and the configuration and files that come with it.

This is the final phase of the software supply chain. After that, the client already uses the application, and it is running in
production. This phase contains the deployment orchestrator, the deployment configuration, the manifest files, and the
deployment environment. It is important to secure all of these to deliver the software to the client safely.

5.1	Deployment Configuration

This section consists of security recommendations for management of the deployment
configuration. This consists of the files, instructions, and access management of the
deployment configuration. Usually, the configuration files are stored in a version control
system, so they need to be protected in it as well.

5.1.1	 Ensure deployment configuration files are separated from source code

Description
Deployment configurations are often stored in a version control system. Separate deployment
configuration files from source code repositories.

Rationale
Deployment configuration manifests are often stored in version control systems. Storing them
in dedicated repositories, separately from source code repositories, has several benefits. First,
it adds order to both maintenance and version control history. This makes it easier to track
code or manifest changes, as well as spot any malicious code or misconfigurations. Second,
it helps achieve the “principle of least privilege.” Because access can be configured differently
for each repository, fewer users will have access to this configuration, which is typically
sensitive.

Audit
Ensure each deployment configuration file is stored separately from source code.

Remediation
Store each deployment configuration file in a dedicated repository separately from
source code.

55

CIS Software Supply Chain Security Guide

5.1.2	 Ensure changes in deployment configuration are tracked

Description
Audit and track changes made in deployment configuration.

Rationale
Deployment configuration is sensitive in nature. The tiniest mistake can lead to downtime or
bugs in production, which consequently may have a direct effect on both product integrity
and customer trust. Misconfigurations might also be used by malicious actors to attack the
production platform. Because of this, every change in the configuration needs a review and
possible “revert” in case of a mistake or malicious change. Auditing every change and tracking
them helps detect and fix such incidents more quickly.

Audit
For each deployment configuration, ensure changes made to it are audited and tracked.

Remediation
For each deployment configuration, track and audit changes made to it.

5.1.3	 Ensure scanners are in place to identify and prevent sensitive data in deployment
configuration

Description
Detect and prevent sensitive data — such as confidential ID numbers, passwords, etc. — in
deployment configurations.

Rationale
Sensitive data in deployment configurations might create a major incident if an attacker gains
access to it, as this can cause data loss and theft. It is important to keep sensitive data safe
and to not expose it in the configuration. In order to prevent a possible exposure, set scanners
that will identify and prevent such data in deployment configurations.

Audit
For each deployment configuration file, verify that scanners are set to identify and prevent the
existence of sensitive data within it.

Remediation
For each deployment configuration file, set scanners to identify and prevent sensitive data
within it.

56

CIS Software Supply Chain Security Guide

5.1.4	 Ensure access to deployment configurations are limited to specific members

Description
Restrict access to the deployment configuration to trusted and qualified users only.

Rationale
Deployment configurations are sensitive in nature. The tiniest mistake can lead to downtime
or bugs in production, which can have a direct effect on the product’s integrity and customer
trust. Misconfigurations might also be used by malicious actors to attack the production
platform. To avoid such harm as much as possible, ensure only trusted and qualified users
have access to such configurations. This will also reduce the number of accounts that might
affect the environment in case of an attack.

Note  Reducing the number of users who have access to the deployment configuration
means those users would lose their ability to make direct changes to that configuration.

Audit
Verify each deployment configuration is accessible only to known and authorized users.

Remediation
Restrict access to the deployment configuration to trusted and qualified users.

5.1.5	 Ensure scanners are in place to secure Infrastructure as Code (IaC) instructions

Description
Detect and prevent misconfigurations or insecure instructions in Infrastructure as Code (IaC)
files, such as Terraform files.

Rationale
Infrastructure as Code (IaC) files are used for production environment and application
deployment. These are sensitive parts of the software supply chain because they are always
in touch with customers, and thus might affect their opinion of or trust in the product.
Attackers often target these environments. Detecting and fixing misconfigurations and/or
insecure instructions in IaC files decreases the risk for data leak or data theft. It is important to
secure IaC instructions in order to prevent further problems of deployment, exposed assets,
or improper configurations, which might ultimately lead to easier ways to attack and steal
organization data.

Audit
For every Infrastructure as Code (IaC) instructions file, verify that scanners are set to identify
and prevent misconfigurations and insecure instructions.

Remediation
For every Infrastructure as Code (IaC) instructions file, set scanners to identify and prevent
misconfigurations and insecure instructions.

57

CIS Software Supply Chain Security Guide

5.1.6	 Ensure deployment configuration manifests are verified

Description
Verify the deployment configuration manifests.

Rationale
To ensure that the configuration manifests used are trusted and have not been infected by
malicious actors before arriving at the platform, it is important to verify the manifests. This may
be done by comparing the checksum of the manifest file to its checksum in a trusted source.
If a difference arises, this is a sign that an unknown actor has interfered and may have added
malicious instructions. If this manifest is used, it might harm the environment and application
deployment, which could end in a massive breach and leave the organization exposed to data
leaks, etc.

Audit
For each deployment configuration manifest in use, ensure it has been verified.

Remediation
Verify each deployment configuration manifest in use.

5.1.7	 Ensure deployment configuration manifests are pinned to a specific, verified version

Description
Deployment configuration is often stored in a version control system and is pulled from there.
Pin the configuration used to a specific, verified version or commit Secure Hash Algorithm
(SHA). Avoid referring configuration without its version tag specified.

Rationale
Deployment configuration manifests are often stored in version control systems and pulled
from there either by automation platforms, such as Ansible, or GitOps platforms, such as Argo
CD. When a manifest is pulled from a version control system without tag or commit Secure
Hash Algorithm (SHA) specified, it is pulled from the HEAD revision, which is equal to the
“latest” tag, and pulls the last change made. This increases the risk of encountering a new,
potentially malicious configuration. If an attacker pushes malicious configuration to the version
control system, the next user who pulls the HEAD revision will pull it and risk attack. To avoid
that risk, use a version tag of the verified version or a commit SHA of a trusted commit, which
will ensure this is the only version pulled.

Note: Changes in deployment configuration will not be pulled unless their version
tag or commit Secure Hash Algorithm (SHA) is specified. This might slow down the
deployment process.

Audit
For every deployment configuration manifest in use, ensure it is pinned to a specific version or
commit Secure Hash Algorithm (SHA).

Remediation
For every deployment configuration manifest in use, pin to a specific version or commit Secure
Hash Algorithm (SHA).

58

CIS Software Supply Chain Security Guide

5.2	Deployment Environment

This section consists of security recommendations for the management of the deployment
environment.

The deployment environment is the orchestrator and the production environment where
the application is deployed. It directly affects the customer experience and trust in a
product, which has serious effects on the organization itself. Securing it varies from access
management to automation.

5.2.1	 Ensure deployments are automated

Description
Automate deployments of production environment and application.

Rationale
Automating the deployments of both production environment and application reduces the risk
for human mistakes — such as a wrong configuration or exposure of sensitive data — because
it requires less human interaction or intervention. It also eases redeployment of the
environment. It is best to automate with Infrastructure as Code (IaC) because it offers more
control over changes made to the environment creation configuration and stores to a version
control platform.

Audit
For each deployment process, ensure it is automated.

Remediation
Automate each deployment process of the production environment and application.

5.2.2	 Ensure the deployment environment is reproducible

Description
Verify that the deployment environment — the orchestrator and the production environment
where the application is deployed — is reproducible. This means that the environment stays
the same in each deployment if the configuration has not changed.

Rationale
A reproducible build is a build that produces the same artifact when given the same
input data, and in this case the same environment. Ensuring that the same environment is
produced when given the same input helps verify that no change has been made to it. This
action allows an organization to trust that its deployment environment is built only from
safe code and configuration that has been reviewed and tested and has not been tainted or
changed abruptly.

Audit
Verify that the deployment/production environment is reproducible.

Remediation
Adjust the process that deploys the deployment/production environment to build the same
environment each time when the configuration has not changed.

59

CIS Software Supply Chain Security Guide

5.2.3	 Ensure access to production environment is limited

Description
Restrict access to the production environment to a few trusted and qualified users only.

Rationale
The production environment is an extremely sensitive one. It directly affects the customer
experience and trust in a product, which has serious effects on the organization itself. Because
of this sensitive nature, it is important to restrict access to the production environment to
only a few trusted and qualified users. This will reduce the risk of mistakes such as exposure
of secrets or misconfiguration. This restriction also reduces the number of accounts that are
vulnerable to hijacking in order to potentially harm the production environment.

Note  Reducing the number of users who have access to the production environment
means those users would lose their ability to make direct changes to that environment.

Audit
Verify that the production environment is accessible only to trusted and qualified users.

Remediation
Restrict access to the production environment to trusted and qualified users.

5.2.4	 Ensure default passwords are not used

Description
Do not use default passwords of deployment tools and components.

Rationale
Many deployment tools and components are provided with default passwords for the first
login. This password is intended to be used only on the first login and should be changed
immediately after. Using the default password increases the attack risk. It is very important to
ensure that default pasxswords are not used in deployment tools and components.

Audit
For each deployment tool, ensure the password is not the default one.

Remediation
For each deployment tool, change the password.

60

CIS Software Supply Chain Security Guide

The Center for Internet Security, Inc. (CIS®) makes the connected
world a safer place for people, businesses, and governments
through our core competencies of collaboration and innovation.
We are a community-driven nonprofit, responsible for the CIS Critical
Security Controls® and CIS Benchmarks™, globally recognized best
practices for securing IT systems and data. We lead a global community
of IT professionals to continuously evolve these standards and provide
products and services to proactively safeguard against emerging
threats. Our CIS Hardened Images® provide secure, on-demand,
scalable computing environments in the cloud.

CIS is home to the Multi-State Information Sharing and Analysis Center®
(MS-ISAC®), the trusted resource for cyber threat prevention, protection,
response, and recovery for U.S. State, Local, Tribal, and Territorial
government entities, and the Elections Infrastructure Information
Sharing and Analysis Center® (EI-ISAC®), which supports the rapidly
changing cybersecurity needs of U.S. election offices. To learn more, visit
CISecurity.org or follow us on Twitter: @CISecurity.

 cisecurity.org

 info@cisecurity.org

 518-266-3460

 Center for Internet Security

 @CISecurity

 TheCISecurity

 cisecurity

	Overview
	Intended Audience
	Consensus Guidance
	Acknowledgments

	1	Source Code
	1.1	Code Changes
	1.1.1	Ensure any changes to code are tracked in a version control platform
	1.1.2	Ensure any change to code can be traced back to its associated task
	1.1.3	Ensure any change to code receives approval of two strongly authenticated users (Automated)
	1.1.4	Ensure previous approvals are dismissed when updates are introduced to a code change proposal
	1.1.5	Ensure there are restrictions on who can dismiss code change reviews
	1.1.6	Ensure code owners are set for extra sensitive code or configuration
	1.1.7	Ensure code owner’s review is required when a change affects owned code
	1.1.8	Ensure inactive branches are periodically reviewed and removed
	1.1.9	Ensure all checks have passed before merging new code
	1.1.10	Ensure open Git branches are up to date before they can be merged into code base
	1.1.11	Ensure all open comments are resolved before allowing code change merging
	1.1.12	Ensure verification of signed commits for new changes before merging
	1.1.13	Ensure linear history is required
	1.1.14	Ensure branch protection rules are enforced for administrators
	1.1.15	Ensure pushing or merging of new code is restricted to specific individuals or teams
	1.1.16	Ensure force push code to branches is denied
	1.1.17	Ensure branch deletions are denied
	1.1.18	Ensure any merging of code is automatically scanned for risks
	1.1.19	Ensure any changes to branch protection rules are audited

	1.2	Repository Management
	1.2.1	Ensure all public repositories contain a SECURITY.md file
	1.2.2	1.2.2 Ensure repository creation is limited to specific members
	1.2.3	Ensure repository deletion is limited to specific users
	1.2.4	Ensure issue deletion is limited to specific users
	1.2.5	Ensure all copies (forks) of code are tracked and accounted for
	1.2.6	Ensure all code projects are tracked for changes in visibility status
	1.2.7	Ensure inactive repositories are reviewed and archived periodically

	1.3	Contribution Access
	1.3.1	Ensure inactive users are reviewed and removed periodically
	1.3.2	Ensure team creation is limited to specific members
	1.3.3	Ensure minimum number of administrators are set for the organization
	1.3.4	Ensure Multi-Factor Authentication (MFA) is required for contributors of new code
	1.3.5	Ensure the organization is requiring members to use Multi-Factor Authentication (MFA)
	1.3.6	Ensure new members are required to be invited using company-approved email
	1.3.7	Ensure two administrators are set for each repository
	1.3.8	Ensure strict base permissions are set for repositories
	1.3.9	Ensure an organization’s identity is confirmed with a “Verified” badge
	1.3.10	Ensure Source Code Management (SCM) email notifications are restricted to verified domains
	1.3.11	Ensure an organization provides SSH certificates
	1.3.12	Ensure Git access is limited based on IP addresses
	1.3.13	Ensure anomalous code behavior is tracked

	1.4	Third-Party
	1.4.1	Ensure administrator approval is required for every installed application
	1.4.2	Ensure stale applications are reviewed and inactive ones are removed
	1.4.3	Ensure the access granted to each installed application is limited to the least privilege needed

	1.5	Code Risks
	1.5.1	Ensure scanners are in place to identify and prevent sensitive data in code
	1.5.2	Ensure scanners are in place to secure Continuous Integration (CI) pipeline instructions
	1.5.3	Ensure scanners are in place to secure Infrastructure as Code (IaC) instructions
	1.5.4	Ensure scanners are in place for code vulnerabilities
	1.5.5	Ensure scanners are in place for open-source vulnerabilities in used packages
	1.5.6	Ensure scanners are in place for open-source license issues in used packages

	2	Build Pipelines
	2.1	Build Environment
	2.1.1	Ensure each pipeline has a single responsibility
	2.1.2	Ensure all aspects of the pipeline infrastructure and configuration are immutable
	2.1.3	Ensure the build environment is logged
	2.1.4	Ensure the creation of the build environment is automated
	2.1.5	Ensure access to build environments is limited
	2.1.6	Ensure users must authenticate to access the build environment

	2.2	Build Worker
	2.2.1	Ensure build workers are single-used
	2.2.2	Ensure build worker environments and commands are passed and not pulled
	2.2.3	Ensure the duties of each build worker are segregated
	2.2.4	Ensure build workers have minimal network connectivity
	2.2.5	Ensure run-time security is enforced for build workers
	2.2.6	Ensure build workers are automatically scanned for vulnerabilities
	2.2.7	Ensure build workers’ deployment configuration is stored in a version control platform
	2.2.8	Ensure resource consumption of build workers is monitored

	2.3	Pipeline Instructions
	2.3.1	Ensure all build steps are defined as code
	2.3.2	Ensure steps have clearly defined build stage input and output
	2.3.3	Ensure output is written to a separate, secured storage repository
	2.3.4	Ensure changes to pipeline files are tracked and reviewed
	2.3.5	Ensure access to build process triggering is minimized
	2.3.6	Ensure pipelines are automatically scanned for misconfigurations
	2.3.7	Ensure pipelines are automatically scanned for vulnerabilities
	2.3.8	Ensure scanners are in place to identify and prevent sensitive data in pipeline files (Automated)

	2.4	Pipeline Integrity
	2.4.1	Ensure all artifacts on all releases are signed
	2.4.2	Ensure all external dependencies used in the build process are locked
	2.4.3	Ensure dependencies are validated before being used
	2.4.4	Ensure the build pipeline creates reproducible artifacts
	2.4.5	Ensure pipeline steps produce a Software Bill of Materials (SBOM)
	2.4.6	Ensure pipeline steps sign the SBOM produced

	3	Dependencies
	3.1	Third-Party Packages
	3.1.1	Ensure third-party artifacts and open-source libraries are verified
	3.1.2	Ensure SBOM is required from all third-party suppliers
	3.1.3	Ensure signed metadata of the build process is required and verified
	3.1.4	Ensure dependencies are monitored between open-source components
	3.1.5	Ensure trusted package managers and repositories are defined and prioritized
	3.1.6	Ensure a signed SBOM of the code is supplied
	3.1.7	Ensure dependencies are pinned to a specific, verified version
	3.1.8	Ensure all packages used are more than 60 days old

	3.2	Validate Packages
	3.2.1	Ensure an organization-wide dependency usage policy is enforced
	3.2.2	Ensure packages are automatically scanned for known vulnerabilities
	3.2.3	Ensure packages are automatically scanned for license implications
	3.2.4	Ensure packages are automatically scanned for ownership change

	4	Artifacts
	4.1	Verification
	4.1.1	Ensure all artifacts are signed by the build pipeline itself
	4.1.2	Ensure artifacts are encrypted before distribution
	4.1.3	Ensure only authorized platforms have decryption capabilities of artifacts

	4.2	Access to Artifacts
	4.2.1	Ensure factor authorization to certify certain artifacts is limited
	4.2.2	Ensure number of permitted users who may upload new artifacts is minimized
	4.2.3	Ensure user access to the package registry utilizes Multi-Factor Authentication (MFA)
	4.2.4	Ensure user management of the package registry is not local
	4.2.5	Ensure anonymous access to artifacts is revoked

	4.3	Package Registries
	4.3.1	Ensure all signed artifacts are validated upon uploading the package registry
	4.3.2	Ensure all versions of an existing artifact have their signatures validated
	4.3.3	Ensure changes in package registry configuration are audited
	4.3.4	Ensure webhooks of the package registry are secured

	4.4	Origin Traceability
	4.4.1	Ensure artifacts contain information about their origin
	4.4.2	Ensure private artifacts are not allowed to be pulled from external registries

	5	Deployment
	5.1	Deployment Configuration
	5.1.1	Ensure deployment configuration files are separated from source code
	5.1.2	Ensure changes in deployment configuration are tracked
	5.1.3	Ensure scanners are in place to identify and prevent sensitive data in deployment configuration
	5.1.4	Ensure access to deployment configurations are limited to specific members
	5.1.5	Ensure scanners are in place to secure Infrastructure as Code (IaC) instructions
	5.1.6	Ensure deployment configuration manifests are verified
	5.1.7	Ensure deployment configuration manifests are pinned to a specific, verified version

	5.2	Deployment Environment
	5.2.1	Ensure deployments are automated
	5.2.2	Ensure the deployment environment is reproducible
	5.2.3	Ensure access to production environment is limited
	5.2.4	Ensure default passwords are not used

